材料科学
掺杂剂
兴奋剂
热电效应
微晶
塞贝克系数
载流子
结晶度
凝聚态物理
光电子学
复合材料
热导率
热力学
物理
冶金
作者
Regina M. Kluge,Nitin Saxena,Wei Chen,Volker Körstgens,Matthias Schwartzkopf,Qi Zhong,Stephan V. Roth,Peter Müller‐Buschbaum
标识
DOI:10.1002/adfm.202003092
摘要
Abstract Thermoelectric generators pose a promising approach in renewable energies as they can convert waste heat into electricity. In order to build high efficiency devices, suitable thermoelectric materials, both n‐ and p‐type, are needed. Here, the n‐type high‐mobility polymer poly[ N , N ′‐bis(2‐octyldodecyl)naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene) (P(NDI2OD‐T2)) is focused upon. Via solution doping with 4‐(1,3‐dimethyl‐2,3‐dihydro‐1H‐benzoimidazol‐2‐yl)‐ N , N ‐diphenylaniline (N‐DPBI), a maximum power factor of (1.84 ± 0.13) µW K −2 m −1 is achieved in an in‐plane geometry for 5 wt% dopant concentration. Additionally, UV–vis spectroscopy and grazing‐incidence wide‐angle X‐ray scattering are applied to elucidate the mechanisms of the doping process and to explain the discrepancy in thermoelectric performance depending on the charge carriers being either transported in‐plane or cross‐plane. Morphological changes are found such that the crystallites, built‐up by extended polymer chains interacting via lamellar and π–π stacking, re‐arrange from face‐ to edge‐on orientation upon doping. At high doping concentrations, dopant molecules disturb the crystallinity of the polymer, hindering charge transport and leading to a decreased power factor at high dopant concentrations. These observations explain why an intermediate doping concentration of N‐DPBI leads to an optimized thermoelectric performance of P(NDI2OD‐T2) in an in‐plane geometry as compared to the cross‐plane case.
科研通智能强力驱动
Strongly Powered by AbleSci AI