An Object-Based Hierarchical Compound Classification Method for Change Detection in Heterogeneous Optical and SAR Images

变更检测 计算机科学 人工智能 合成孔径雷达 分割 马尔可夫随机场 模式识别(心理学) 图像分割 计算机视觉 比例(比率) 目标检测 遥感 地质学 物理 量子力学
作者
Ling Wan,Yuming Xiang,Hongjian You
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (12): 9941-9959 被引量:81
标识
DOI:10.1109/tgrs.2019.2930322
摘要

Change detection in heterogeneous remote sensing images is an important but challenging task because of the incommensurable appearances of the heterogeneous images. In order to solve the change detection problem in optical and synthetic aperture radar (SAR) images, this paper proposes an improved method that combines cooperative multitemporal segmentation and hierarchical compound classification (CMS-HCC) based on our previous work. Considering the large radiometric and geometric differences between heterogeneous images, first, a cooperative multitemporal segmentation method is introduced to generate multi-scale segmentation results. This method segments two images together by associating the information from the two images and thus reduces the noises and errors caused by area transition and object misalignment, as well as makes the boundaries of detected objects described more accurately. Then, a region-based multitemporal hierarchical Markov random field (RMH-MRF) model is defined to combine spatial, temporal, and multi-level information. With the RMH-MRF model, a hierarchical compound classification method is performed by identifying the optimal configuration of labels with a region-based marginal posterior mode estimation, further improving the change detection accuracy. The changes can be determined if the labels assigned to each pair of parcels are different, obtaining multi-scale change maps. Experimental validation is conducted on several pairs of optical and SAR images. It consists of two parts: comparison on different multitemporal segmentation methods and comparison on different change detection methods. The results show that the proposed method can effectively detect the changes in heterogeneous images, with low false positive and high accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
2秒前
OU应助科研通管家采纳,获得10
3秒前
领导范儿应助灵巧的听枫采纳,获得10
3秒前
落雪无痕应助科研通管家采纳,获得20
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
木子川应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
gkads应助科研通管家采纳,获得10
3秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
ttw应助科研通管家采纳,获得10
4秒前
OU应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
今后应助ywj采纳,获得10
4秒前
孤独的大灰狼完成签到 ,获得积分0
6秒前
7秒前
9秒前
11秒前
11秒前
ywj完成签到,获得积分10
12秒前
orixero应助zxj采纳,获得10
13秒前
风语村发布了新的文献求助10
13秒前
解文哲发布了新的文献求助10
14秒前
可爱的函函应助DT采纳,获得10
14秒前
马畅完成签到 ,获得积分10
15秒前
Dopamine完成签到 ,获得积分10
16秒前
fangliu发布了新的文献求助10
16秒前
16秒前
ywj发布了新的文献求助10
16秒前
54687完成签到,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300721
求助须知:如何正确求助?哪些是违规求助? 4448507
关于积分的说明 13846121
捐赠科研通 4334281
什么是DOI,文献DOI怎么找? 2379527
邀请新用户注册赠送积分活动 1374643
关于科研通互助平台的介绍 1340312