转录因子
嵌入
计算生物学
解码
生物
DNA
DNA结合位点
互补序列
解码方法
遗传学
计算机科学
人工智能
基因
数学
算法
发起人
组合数学
基因表达
作者
Han Yuan,Meghana Kshirsagar,Lee Zamparo,Yuheng Lu,Christina Leslie
出处
期刊:Nature Methods
[Nature Portfolio]
日期:2019-08-12
卷期号:16 (9): 858-861
被引量:40
标识
DOI:10.1038/s41592-019-0511-y
摘要
The decoding of transcription factor (TF) binding signals in genomic DNA is a fundamental problem. Here we present a prediction model called BindSpace that learns to embed DNA sequences and TF labels into the same space. By training on binding data from hundreds of TFs and embedding over 1 M DNA sequences, BindSpace achieves state-of-the-art multiclass binding prediction performance, in vitro and in vivo, and can distinguish between signals of closely related TFs.
科研通智能强力驱动
Strongly Powered by AbleSci AI