清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Spatial-temporal variability of radiomic features and its effect on the classification of lung cancer histology

组织学 肺癌 医学 放射科 灵敏度(控制系统) 癌症 核医学 病理 内科学 电子工程 工程类
作者
Kyle Lafata,Jing Cai,Chunhao Wang,Julian C. Hong,Chris R. Kelsey,F Yin
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:63 (22): 225003-225003 被引量:39
标识
DOI:10.1088/1361-6560/aae56a
摘要

The purpose of this research was to study the sensitivity of Computed Tomography (CT) radiomic features to motion blurring and signal-to-noise ratios (SNR), and investigate its downstream effect regarding the classification of non-small cell lung cancer (NSCLC) histology. Forty-three radiomic features were considered and classified into one of four categories: Morphological, Intensity, Fine Texture, and Coarse Texture. First, a series of simulations were used to study feature-sensitivity to changes in spatial-temporal resolution. A dynamic digital phantom was used to generate images with different breathing amplitudes and SNR, from which features were extracted and characterized relative to initial simulation conditions. Stage I NSCLC patients were then retrospectively identified, from which three different acquisition-specific feature-spaces were generated based on free-breathing (FB), average-intensity-projection (AIP), and end-of-exhalation (EOE) CT images. These feature-spaces were derived to cover a wide range of spatial-temporal tradeoff. Normalized percent differences and concordance correlation coefficients (CCC) were used to assess the variability between the 3D and 4D acquisition techniques. Subsequently, three corresponding acquisition-specific logistic regression models were developed to classify lung tumor histology. Classification performance was compared between the different data-dependent models. Simulation results demonstrated strong linear dependences (p > 0.95) between respiratory motion and morphological features, as well as between SNR and texture features. The feature Short Run Emphasis was found to be particularly stable to both motion blurring and changes in SNR. When comparing FB-to-EOE, 37% of features demonstrated high CCC agreement (CCC > 0.8), compared to only 30% for FB-to-AIP. In classifying tumor histology, EoE images achieved an average AUC, Accuracy, Sensitivity, and Specificity of [Formula: see text], respectively. FB images achieved respective values of [Formula: see text], and AIP images achieved respective values of [Formula: see text]. Several radiomic features have been identified as being relatively robust to spatial-temporal variations based on both simulation data and patient data. In general, features that were sensitive to motion blurring were not necessarily the same features that were sensitive to changes in SNR. Our modeling results suggest that the EoE phase of a 4DCT acquisition may provide useful radiomic information, particularly for features that are highly sensitive to respiratory motion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
652183758完成签到 ,获得积分10
27秒前
urologywang完成签到 ,获得积分10
36秒前
yy完成签到 ,获得积分20
44秒前
51秒前
随机的鱼完成签到,获得积分20
52秒前
香蕉觅云应助科研通管家采纳,获得10
53秒前
随机的鱼发布了新的文献求助10
58秒前
orixero应助随机的鱼采纳,获得10
1分钟前
1分钟前
科研小白发布了新的文献求助10
1分钟前
魏青瑜应助111采纳,获得10
1分钟前
jeff完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
qiaorankongling完成签到 ,获得积分10
1分钟前
12305014077完成签到 ,获得积分10
2分钟前
power完成签到,获得积分10
3分钟前
xingsixs完成签到 ,获得积分10
4分钟前
DX120210165完成签到,获得积分20
4分钟前
ioioio完成签到,获得积分10
5分钟前
滕皓轩完成签到 ,获得积分10
5分钟前
默默新波完成签到 ,获得积分10
5分钟前
CC完成签到 ,获得积分10
5分钟前
CHEN完成签到 ,获得积分10
6分钟前
Owen应助科研通管家采纳,获得10
6分钟前
tufei完成签到,获得积分10
6分钟前
AU完成签到 ,获得积分10
7分钟前
8分钟前
8分钟前
9分钟前
求学发布了新的文献求助10
9分钟前
和谐的夏岚完成签到 ,获得积分10
9分钟前
10分钟前
完美世界应助科研通管家采纳,获得10
10分钟前
彭于晏应助科研通管家采纳,获得10
10分钟前
求学驳回了Owen应助
10分钟前
充电宝应助ma采纳,获得10
11分钟前
早睡早起身体好Q完成签到 ,获得积分10
11分钟前
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5459366
求助须知:如何正确求助?哪些是违规求助? 4564996
关于积分的说明 14297429
捐赠科研通 4490164
什么是DOI,文献DOI怎么找? 2459573
邀请新用户注册赠送积分活动 1449223
关于科研通互助平台的介绍 1424785