Two-dimensional g-C3N4/InSe heterostructure as a novel visible-light photocatalyst for overall water splitting: a first-principles study

纳米片 单层 异质结 光催化 材料科学 电子迁移率 分解水 电子 可见光谱 光催化分解水 载流子 直接和间接带隙 带隙 光电子学 纳米技术 化学 物理 催化作用 量子力学 生物化学
作者
Yong He,Min Zhang,Junjie Shi,Yaohui Zhu,Yu-lang Cen,Meng Wu,Wenhui Guo,Yi-min Ding
出处
期刊:Journal of Physics D [Institute of Physics]
卷期号:52 (1): 015304-015304 被引量:30
标识
DOI:10.1088/1361-6463/aae67d
摘要

The enhanced visible-light harvesting, low recombination of electron–hole pairs and high carrier mobility are found in a novel g-C3N4/InSe hybrid two-dimensional (2D) heterostructure photocatalyst by using first-principles calculations for the first time. The photocatalytic mechanism of g-C3N4/InSe is comprehensively investigated. Our calculations show that 2D g-C3N4/InSe heterostructure has a direct band gap of 1.93 eV and a typical type-II band alignment with holes and electrons located in metal-free g-C3N4 monolayer and non-noble metal InSe nanosheet, respectively. A remarkable visible-light absorption can thus be expected. The electrons and holes located in InSe and g-C3N4 monolayers have a high mobility (104 and 102 cm2 V−1 s−1), which is beneficial for improving the catalytic efficiency. The charge density difference and type-II band structure indicate that the photo-generated electrons easily transfer from g-C3N4 monolayer to InSe nanosheet, and the holes are transferred from InSe to g-C3N4, reducing the electron–hole recombination. Compared with the well-known 2D g-C3N4/MoS2 hybrid photocatalyst composed of g-C3N4 nanosheet and MoS2 monolayer with a low electron mobility (<200 cm2 V−1 s−1) and fast electron–hole recombination due to its direct bandgap, g-C3N4/InSe heterostructure photocatalyst has a distinctive advantage in improving the photocatalytic hydrogen evolution performance due to the high carrier mobility and suppressing the recombination of photo-generated electrons and holes by the indirect band gap of InSe monolayer. These clearly prove that g-C3N4/InSe is an energetic photocatalyst for overall water splitting under visible-light irradiation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sheri1发布了新的文献求助10
刚刚
322小弟发布了新的文献求助10
1秒前
Jiro完成签到,获得积分10
1秒前
FashionBoy应助QFeng采纳,获得10
2秒前
MOON发布了新的文献求助10
2秒前
2秒前
Hello应助烯灯采纳,获得10
3秒前
3秒前
清新的剑心完成签到 ,获得积分10
4秒前
彭于彦祖应助蔺亦丝采纳,获得40
4秒前
cdercder应助科研通管家采纳,获得10
5秒前
cdercder应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
6秒前
长情诗蕾应助小鱼丸采纳,获得10
6秒前
6秒前
PAUL发布了新的文献求助10
6秒前
7秒前
hh完成签到,获得积分10
7秒前
7秒前
orixero应助pjmwj采纳,获得10
8秒前
8秒前
巴拉巴拉完成签到,获得积分10
8秒前
研友_8yX0xZ完成签到,获得积分10
8秒前
莫泊桑完成签到,获得积分10
8秒前
8秒前
8秒前
我是雅婷完成签到,获得积分10
8秒前
丘比特应助大楊采纳,获得10
10秒前
LLM发布了新的文献求助10
10秒前
10秒前
撒大苏打发布了新的文献求助10
10秒前
脑洞疼应助沙粒子采纳,获得10
11秒前
抹茶麻薯发布了新的文献求助10
11秒前
11秒前
11秒前
优秀的以柳完成签到,获得积分20
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808831
求助须知:如何正确求助?哪些是违规求助? 3353506
关于积分的说明 10365583
捐赠科研通 3069749
什么是DOI,文献DOI怎么找? 1685746
邀请新用户注册赠送积分活动 810704
科研通“疑难数据库(出版商)”最低求助积分说明 766300