Recent Advances, Design Guidelines, and Prospects of All-Polymer Solar Cells

纳米技术 商业化 富勒烯 聚合物太阳能电池 合理设计 材料科学 能量转换效率 化学 光电子学 政治学 有机化学 法学
作者
Changyeon Lee,Seungjin Lee,Geon-U Kim,Wonho Lee,Bumjoon J. Kim
出处
期刊:Chemical Reviews [American Chemical Society]
卷期号:119 (13): 8028-8086 被引量:571
标识
DOI:10.1021/acs.chemrev.9b00044
摘要

All-polymer solar cells (all-PSCs) consisting of polymer donors (PDs) and polymer acceptors (PAs) have drawn tremendous research interest in recent years. It is due to not only their tunable optical, electrochemical, and structural properties, but also many superior features that are not readily available in conventional polymer-fullerene solar cells (fullerene-PSCs) including long-term stability, synthetic accessibility, and excellent film-forming properties suitable for large-scale manufacturing. Recent breakthroughs in material design and device engineering have driven the power conversion efficiencies (PCEs) of all-PSCs exceeding 11%, which is comparable to the performance of fullerene-PSCs. Furthermore, outstanding mechanical durability and stretchability have been reported for all-PSCs, which make them stand out from the other small molecule-based PSCs as a promising power supplier for wearable electronic devices. This review provides a comprehensive overview of the important work in all-PSCs, in which pertinent examples are deliberately chosen. First, we describe the key components that enabled the recent progresses of all-PSCs including rational design rules for efficient PDs and PAs, blend morphology control, and light harvesting engineering. We also review the recent work on the understanding of the stability of all-PSCs under various external conditions, which highlights the importance of all-PSCs for future implementation and commercialization. Finally, because all-PSCs have not yet achieved their full potential and are still undergoing rapid development, we offer our views on the current challenges and future prospects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Brendan发布了新的文献求助10
刚刚
2秒前
yjj19990124完成签到,获得积分10
2秒前
2秒前
要开心吖完成签到,获得积分10
3秒前
Yamila完成签到,获得积分10
3秒前
PATTOM完成签到,获得积分10
4秒前
烟花应助京京采纳,获得10
4秒前
4秒前
123发布了新的文献求助30
5秒前
ccc完成签到 ,获得积分10
7秒前
yang发布了新的文献求助10
8秒前
8秒前
无花果应助勤劳的绿竹采纳,获得10
9秒前
wyr完成签到,获得积分10
9秒前
CipherSage应助赛Pierce采纳,获得10
11秒前
11秒前
Zoey发布了新的文献求助100
13秒前
沫豆应助钮不二采纳,获得200
13秒前
15秒前
yang完成签到,获得积分10
16秒前
16秒前
华仔应助淡然元彤采纳,获得30
16秒前
跳跃的白云完成签到 ,获得积分10
17秒前
20秒前
石原妮美发布了新的文献求助10
20秒前
21秒前
在水一方应助Torankus采纳,获得10
21秒前
21秒前
ZQYYRA完成签到,获得积分10
25秒前
26秒前
慕青应助愿皆自爱采纳,获得10
28秒前
Haley完成签到,获得积分10
29秒前
30秒前
whh123发布了新的文献求助10
30秒前
31秒前
34秒前
34秒前
传奇3应助DLL采纳,获得10
35秒前
Lucas应助宝宝巴士驾驶员采纳,获得10
36秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
Aspect and Predication: The Semantics of Argument Structure 666
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2410711
求助须知:如何正确求助?哪些是违规求助? 2106089
关于积分的说明 5321047
捐赠科研通 1833534
什么是DOI,文献DOI怎么找? 913613
版权声明 560840
科研通“疑难数据库(出版商)”最低求助积分说明 488543