Multi-Class Skin Diseases Classification Using Deep Convolutional Neural Network and Support Vector Machine

支持向量机 卷积神经网络 计算机科学 人工智能 班级(哲学) 模式识别(心理学) 载体(分子生物学) 重组DNA 生物化学 基因 化学
作者
Nazia Hameed,Keshav Dahal,M. Pear Hossain
标识
DOI:10.1109/skima.2018.8631525
摘要

Globally, skin diseases are the fourth leading cause of non-fatal disease burden. Both high and low-income countries suffer from this burden; indicates the prevention of skin diseases should be prioritised. In this research work, an intelligent diagnosis scheme is proposed for multi-class skin lesion classification. The proposed scheme is implemented using a hybrid approach i.e. using deep convolution neural network and error-correcting output codes (ECOC) support vector machine (SVM). The proposed scheme is designed, implemented and tested to classify skin lesion image into one of five categories, i.e. healthy, acne, eczema, benign, or malignant melanoma. Experiments were performed on 9,144 images obtained from different sources. AlexNET, a pre-trained CNN model was used to extract the features. For classification, the ECOC SVM classifier was used. Using ECOC SVM, the overall accuracy achieved is 86.21%. 10-fold cross validation technique was used to avoid overfitting. The results indicate that features obtained from the convolutional neural network are capable of enhancing the classification performance of multiple skin lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十一月十三关注了科研通微信公众号
1秒前
1秒前
赘婿应助能量球采纳,获得10
1秒前
穆紫应助张世奇采纳,获得10
2秒前
zhizhi完成签到 ,获得积分10
3秒前
桐桐应助Tree采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
ziying126发布了新的文献求助10
4秒前
bc应助Roy采纳,获得20
5秒前
5秒前
所所应助冷艳从梦采纳,获得10
5秒前
汤泽琪发布了新的文献求助10
5秒前
赘婿应助博修采纳,获得10
6秒前
无限花卷完成签到,获得积分10
6秒前
zy完成签到,获得积分10
6秒前
6秒前
小柿子完成签到,获得积分10
6秒前
7秒前
7秒前
冯123完成签到,获得积分10
8秒前
girl完成签到 ,获得积分10
8秒前
学术z发布了新的文献求助10
8秒前
Mia完成签到,获得积分10
8秒前
猪猪hero发布了新的文献求助10
9秒前
9秒前
打打应助Enri采纳,获得10
9秒前
孙非发布了新的文献求助10
10秒前
11秒前
myself发布了新的文献求助30
11秒前
12秒前
李梦苒完成签到,获得积分10
12秒前
12秒前
12秒前
水三寿发布了新的文献求助20
12秒前
幽默白柏完成签到,获得积分10
13秒前
13秒前
duanhuiyuan举报求助违规成功
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793195
求助须知:如何正确求助?哪些是违规求助? 3337889
关于积分的说明 10287559
捐赠科研通 3054449
什么是DOI,文献DOI怎么找? 1675991
邀请新用户注册赠送积分活动 804004
科研通“疑难数据库(出版商)”最低求助积分说明 761681