Classification between digs and dust particles on optical surfaces with acquisition and analysis of polarization characteristics

旋光法 光学 极化(电化学) 物理 线极化 穆勒微积分 遥感 散射 计算机科学 激光器 地质学 化学 物理化学
作者
Fan Wu,Yongying Yang,Jiabin Jiang,Pengfei Zhang,Yanwei Li,Xiao Xiang,Guo‐Hua Feng,Jian Bai,Kaiwei Wang,Qiao Xu,Hongzhen Jiang,Bo Gao
出处
期刊:Applied Optics [Optica Publishing Group]
卷期号:58 (4): 1073-1073 被引量:24
标识
DOI:10.1364/ao.58.001073
摘要

In the automatic detection for surface defects of optical components, the digs and dust particles exhibit similar features: point-like shape and variable intensity reflectivity. On this condition, these two types with entirely different damages are easily confused so that misjudgments will be induced. To solve this problem, a polarization-characteristics-based classification method of digs and dust particles (PCCDD) is proposed based on the polarimetric imaging technique and dark-field imaging technique. First, a dark-field imaging system equipped with a polarization state generator (PSG) and a polarization state analyzer (PSA) is employed to measure and establish normalized Mueller matrices' datasets of digs and dust particles. And by a nonlinear global search combined with a separability evaluation method, the optimal number of acquisitions and corresponding polarization measurement states of the PSG and the PSA are obtained, as well as the parameters of classification function. Then, multiple polarization images are acquired under the optimal states to extract a multidimensional feature description that relates only to the polarization characteristics of the defect; this subsequently acts as the input vector of the classifier to finally achieve the classification. This method takes full advantage of both the difference in polarization properties between digs and dust particles and the characteristic that the polarization properties of digs are relatively invariant while those of dust particles have a large variability. The classification process involves only simple matrix operations. Compared to the traditional discrimination method based on intensity images, the features obtained by this method have a higher separability. Experiments show that the classification accuracy reaches over 90%. This method can be further applied to the recognition and discrimination of other defects in the field of surface defects' detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷酷秋柳完成签到,获得积分20
2秒前
我爱学习完成签到 ,获得积分10
3秒前
samvega举报hk1900求助涉嫌违规
3秒前
鹜往完成签到,获得积分10
3秒前
CodeCraft应助冠心病小趴菜采纳,获得20
3秒前
笨笨凡松发布了新的文献求助10
5秒前
5秒前
6秒前
赘婿应助Shengee采纳,获得10
7秒前
友亿完成签到,获得积分10
7秒前
yangx完成签到,获得积分10
8秒前
Yaodong完成签到,获得积分20
10秒前
喜悦寒凝完成签到,获得积分10
10秒前
六月发布了新的文献求助30
11秒前
Ra321完成签到,获得积分10
11秒前
呜啦啦发布了新的文献求助10
11秒前
12秒前
JamesPei应助菜鸟小鱼采纳,获得20
12秒前
米豆给米豆的求助进行了留言
13秒前
小马甲应助yangx采纳,获得10
13秒前
111完成签到,获得积分10
13秒前
西北孤傲的狼完成签到,获得积分10
15秒前
zxxx发布了新的文献求助10
15秒前
Qin应助威武飞双采纳,获得20
16秒前
尊敬灵松发布了新的文献求助10
16秒前
spujo应助任性的学姐采纳,获得10
17秒前
自觉从筠完成签到 ,获得积分10
17秒前
18秒前
18秒前
xaioyu发布了新的文献求助20
19秒前
LX完成签到,获得积分10
21秒前
gyf应助矮小的帽子采纳,获得10
21秒前
21秒前
22秒前
绳网用户17117496完成签到,获得积分10
22秒前
科研专家完成签到 ,获得积分10
22秒前
23秒前
蓝色发布了新的文献求助10
23秒前
斯寜应助认真子默采纳,获得10
24秒前
龙眼肉发布了新的文献求助10
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787451
求助须知:如何正确求助?哪些是违规求助? 3333090
关于积分的说明 10259068
捐赠科研通 3048483
什么是DOI,文献DOI怎么找? 1673134
邀请新用户注册赠送积分活动 801680
科研通“疑难数据库(出版商)”最低求助积分说明 760308