Classification between digs and dust particles on optical surfaces with acquisition and analysis of polarization characteristics

旋光法 光学 极化(电化学) 物理 线极化 穆勒微积分 遥感 散射 计算机科学 激光器 地质学 化学 物理化学
作者
Fan Wu,Yongying Yang,Jiabin Jiang,Pengfei Zhang,Yanwei Li,Xiao Xiang,Guo‐Hua Feng,Jian Bai,Kaiwei Wang,Qiao Xu,Hongzhen Jiang,Bo Gao
出处
期刊:Applied Optics [Optica Publishing Group]
卷期号:58 (4): 1073-1073 被引量:27
标识
DOI:10.1364/ao.58.001073
摘要

In the automatic detection for surface defects of optical components, the digs and dust particles exhibit similar features: point-like shape and variable intensity reflectivity. On this condition, these two types with entirely different damages are easily confused so that misjudgments will be induced. To solve this problem, a polarization-characteristics-based classification method of digs and dust particles (PCCDD) is proposed based on the polarimetric imaging technique and dark-field imaging technique. First, a dark-field imaging system equipped with a polarization state generator (PSG) and a polarization state analyzer (PSA) is employed to measure and establish normalized Mueller matrices' datasets of digs and dust particles. And by a nonlinear global search combined with a separability evaluation method, the optimal number of acquisitions and corresponding polarization measurement states of the PSG and the PSA are obtained, as well as the parameters of classification function. Then, multiple polarization images are acquired under the optimal states to extract a multidimensional feature description that relates only to the polarization characteristics of the defect; this subsequently acts as the input vector of the classifier to finally achieve the classification. This method takes full advantage of both the difference in polarization properties between digs and dust particles and the characteristic that the polarization properties of digs are relatively invariant while those of dust particles have a large variability. The classification process involves only simple matrix operations. Compared to the traditional discrimination method based on intensity images, the features obtained by this method have a higher separability. Experiments show that the classification accuracy reaches over 90%. This method can be further applied to the recognition and discrimination of other defects in the field of surface defects' detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助卡尔采纳,获得10
3秒前
4秒前
4秒前
wangy发布了新的文献求助10
5秒前
健壮定帮完成签到,获得积分10
5秒前
5秒前
狐尾完成签到,获得积分10
6秒前
加一点荒谬完成签到,获得积分10
7秒前
Fairy完成签到,获得积分10
7秒前
chenhui完成签到,获得积分10
8秒前
8秒前
Yuna完成签到,获得积分10
9秒前
zhk发布了新的文献求助10
9秒前
10秒前
10秒前
喜悦稀完成签到,获得积分10
11秒前
yuyuyu发布了新的文献求助10
12秒前
12秒前
在水一方应助rudjs采纳,获得10
12秒前
12秒前
13秒前
kid1412完成签到,获得积分10
14秒前
上山石头发布了新的文献求助10
14秒前
彭舟发布了新的文献求助10
14秒前
灼灼发布了新的文献求助10
14秒前
TianY发布了新的文献求助10
14秒前
难过曼冬完成签到 ,获得积分10
14秒前
bob完成签到,获得积分10
15秒前
完美世界应助李李李采纳,获得10
15秒前
文艺的幼菱完成签到,获得积分10
15秒前
潇洒小松鼠完成签到,获得积分10
15秒前
15秒前
李旭涵发布了新的文献求助10
16秒前
11112222完成签到 ,获得积分10
16秒前
18秒前
Orange应助lcj1014采纳,获得10
18秒前
meimei完成签到,获得积分20
19秒前
醉眠发布了新的文献求助10
19秒前
英姑应助虚拟的黄蜂采纳,获得10
20秒前
李健应助舒心源智采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4968711
求助须知:如何正确求助?哪些是违规求助? 4225974
关于积分的说明 13161313
捐赠科研通 4013107
什么是DOI,文献DOI怎么找? 2195894
邀请新用户注册赠送积分活动 1209316
关于科研通互助平台的介绍 1123357