Molecular classification and subtype-specific characterization of skin cutaneous melanoma by aggregating multiple genomic platform data

血液学 黑色素瘤 分子生物标志物 计算生物学 病理 内科学 医学 皮肤病科 癌症研究 生物
作者
Xiaofan Lu,Qianyuan Zhang,Yue Wang,Liya Zhang,Huiling Zhao,Chen Chen,Yaoyan Wang,Shengjie Liu,Tao Lu,Fei Wang,Fangrong Yan
出处
期刊:Journal of Cancer Research and Clinical Oncology [Springer Science+Business Media]
卷期号:144 (9): 1635-1647 被引量:18
标识
DOI:10.1007/s00432-018-2684-7
摘要

Traditional classification of melanoma is widely utilized with little apparent results making the development of robust classifiers that can guide therapies an urgency. Successful seminal research on classification has provided a wider understanding of cancer from multiple molecular profiles, respectively. However, it may ignore the complementary nature of the information provided by different types of data, which motivated us to subtype melanoma by aggregating multiple genomic platform data. Aggregating three omics data of 328 melanoma samples, melanoma subtyping was performed by three clustering methods. Differences across subtypes were extracted by functional enrichment, epigenetically silencing, gene mutations and clinical features. Subtypes were further distinguished by putative biomarkers. Functional enrichment of the subtype-specific differential expression genes endowed subtypes new designation: immune, melanin and ion, in which the first subtype was enriched for immune system, the second was characterized by melanin and pigmentation, and the third was enriched for ion-involved transmission process. Subtypes also differed in age, Breslow thickness, tumor site, mutation frequency of BRAF, PTGS2, CDKN2A, CDKN2B and incidence of epigenetically silencing for IL15RA, EPSTI1, LXN, CDKN1B genes. Skin cutaneous melanoma can be robustly divided into three subtypes by SNFCC+. Compared with the TCGA classification derived from gene expression, the subtypes we presented share concordance, but new traits are excavated. Such a genomic classification offers insights to further personalize therapeutic decision-making and melanoma management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mrwang完成签到 ,获得积分10
1秒前
sunwen发布了新的文献求助10
2秒前
swordshine完成签到,获得积分10
3秒前
4秒前
wang完成签到,获得积分10
5秒前
7秒前
毛毛弟完成签到 ,获得积分10
7秒前
超级的妙晴完成签到 ,获得积分10
13秒前
Ashley完成签到 ,获得积分10
13秒前
困困困完成签到 ,获得积分0
14秒前
务实的奇迹完成签到 ,获得积分10
17秒前
wol007完成签到 ,获得积分10
23秒前
包容的忆灵完成签到 ,获得积分10
24秒前
ljc完成签到 ,获得积分10
30秒前
31秒前
31秒前
35秒前
huafornol发布了新的文献求助10
35秒前
xingyi完成签到,获得积分10
36秒前
饱满一手完成签到 ,获得积分10
37秒前
谦让的半山完成签到 ,获得积分10
43秒前
smile完成签到,获得积分10
45秒前
huafornol完成签到,获得积分10
45秒前
从容的月光完成签到 ,获得积分10
46秒前
666星爷完成签到,获得积分10
50秒前
50秒前
疯狂的绝山完成签到 ,获得积分10
51秒前
鲜于灵竹发布了新的文献求助10
54秒前
小刺猬完成签到,获得积分10
55秒前
MeSs完成签到 ,获得积分10
55秒前
煮饭吃Zz完成签到 ,获得积分10
59秒前
lx完成签到,获得积分10
1分钟前
早睡完成签到 ,获得积分10
1分钟前
ANESTHESIA_XY完成签到 ,获得积分10
1分钟前
SYLH应助鲜于灵竹采纳,获得10
1分钟前
1分钟前
小张完成签到 ,获得积分10
1分钟前
鲜于灵竹完成签到,获得积分10
1分钟前
滴滴哒哒完成签到 ,获得积分10
1分钟前
科研怪人完成签到 ,获得积分10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833939
求助须知:如何正确求助?哪些是违规求助? 3376362
关于积分的说明 10492715
捐赠科研通 3095877
什么是DOI,文献DOI怎么找? 1704767
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859