Structure-based sampling and self-correcting machine learning for accurate calculations of potential energy surfaces and vibrational levels

旋转振动光谱学 从头算 采样(信号处理) 计算机科学 能量(信号处理) 核(代数) 集合(抽象数据类型) 算法 人工智能 机器学习 数学 物理 分子 统计 量子力学 离散数学 滤波器(信号处理) 计算机视觉 程序设计语言
作者
Pavlo O. Dral,A. Owens,S. N. Yurchenko,Walter Thiel
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:146 (24) 被引量:143
标识
DOI:10.1063/1.4989536
摘要

We present an efficient approach for generating highly accurate molecular potential energy surfaces (PESs) using self-correcting, kernel ridge regression (KRR) based machine learning (ML). We introduce structure-based sampling to automatically assign nuclear configurations from a pre-defined grid to the training and prediction sets, respectively. Accurate high-level ab initio energies are required only for the points in the training set, while the energies for the remaining points are provided by the ML model with negligible computational cost. The proposed sampling procedure is shown to be superior to random sampling and also eliminates the need for training several ML models. Self-correcting machine learning has been implemented such that each additional layer corrects errors from the previous layer. The performance of our approach is demonstrated in a case study on a published high-level ab initio PES of methyl chloride with 44 819 points. The ML model is trained on sets of different sizes and then used to predict the energies for tens of thousands of nuclear configurations within seconds. The resulting datasets are utilized in variational calculations of the vibrational energy levels of CH3Cl. By using both structure-based sampling and self-correction, the size of the training set can be kept small (e.g., 10% of the points) without any significant loss of accuracy. In ab initio rovibrational spectroscopy, it is thus possible to reduce the number of computationally costly electronic structure calculations through structure-based sampling and self-correcting KRR-based machine learning by up to 90%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
希望天下0贩的0应助hz采纳,获得10
2秒前
nns发布了新的文献求助10
2秒前
乐乐应助66m37采纳,获得10
2秒前
星黛露完成签到,获得积分10
2秒前
陈子旋完成签到,获得积分10
2秒前
3秒前
XY完成签到,获得积分10
3秒前
3秒前
李健应助机智的慕儿采纳,获得10
3秒前
3秒前
aefs发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
jy发布了新的文献求助10
5秒前
SYLH应助程嘉玲采纳,获得10
6秒前
所所应助程嘉玲采纳,获得10
6秒前
超级平凡发布了新的文献求助10
6秒前
6秒前
SYLH应助静心404采纳,获得10
7秒前
现代汽车发布了新的文献求助10
7秒前
执意发布了新的文献求助10
9秒前
简化为完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
慕明花开发布了新的文献求助10
11秒前
aefs完成签到,获得积分20
11秒前
Zqs发布了新的文献求助10
11秒前
12秒前
Jake完成签到,获得积分10
12秒前
0823发布了新的文献求助30
13秒前
13秒前
13秒前
14秒前
个性向秋完成签到,获得积分10
14秒前
QIAO发布了新的文献求助10
14秒前
15秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838822
求助须知:如何正确求助?哪些是违规求助? 3381252
关于积分的说明 10517468
捐赠科研通 3100694
什么是DOI,文献DOI怎么找? 1707708
邀请新用户注册赠送积分活动 821857
科研通“疑难数据库(出版商)”最低求助积分说明 773033