材料科学
响应度
光电子学
暗电流
退火(玻璃)
结晶度
蓝宝石
光电探测器
分子束外延
外延
半导体
薄膜
光学
纳米技术
激光器
复合材料
物理
图层(电子)
作者
L. X. Qian,Huafan Zhang,P. T. Lai,Zehan Wu,Xingzhao Liu
摘要
Recently, monoclinic Ga2O3 (beta-Ga2O3) photodetectors (PDs) have been extensively studied for various commercial and military applications due to the merits of intrinsic solar rejection, high gain, and great compactness. In this work, c-plane sapphire substrates were annealed under different temperatures in a vacuum furnace prior to the molecular beam epitaxy (MBE) of beta-Ga2O3 thin film, which yielded a smoother surface and even a terraceand- step-like morphology on the substrate, resulting in improved crystallinity of the epitaxial film. Accordingly, both the dark and photo currents of beta-Ga2O3 metal-semiconductor-metal (MSM) PDs were increased by the enhanced carrier mobility (mu) of the more crystalline film. However, the substrate-annealing temperature must be sufficiently high to offset the rise of the dark current and thus achieve a remarkable improvement in the photodetection properties. As a result, the PD fabricated on the 1050 degrees C-annealed substrate exhibited extremely high sensitivity, for example, high responsivity (R) of 54.9 A/ W and large specific detectivity (D*) of 3.71 x 10(14) Jones. Both parameters were increased by one order of magnitude because of the combined effects of the dramatic increase in mu and the effective reduction in defect-related recombination centers. Nevertheless, the latter also prolonged the recovery time of the PD. These findings suggest another way to develop beta-Ga2O3 PD with extremely high sensitivity. (C) 2017 Optical Society of America
科研通智能强力驱动
Strongly Powered by AbleSci AI