Autonomous Recharging and Flight Mission Planning for Battery-Operated Autonomous Drones

无人机 航空学 运动规划 电池(电) 工程类 计算机科学 机器人 系统工程 航空航天工程 控制工程 汽车工程 人工智能 功率(物理) 生物 物理 量子力学 遗传学
作者
Rashid Alyassi,Majid Khonji,Areg Karapetyan,Chi-Kin Chau,Khaled Elbassioni,Chien-Ming Tseng
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1034-1046 被引量:116
标识
DOI:10.1109/tase.2022.3175565
摘要

Unmanned aerial vehicles (UAVs), commonly known as drones, are being increasingly deployed throughout the globe as a means to streamline monitoring, inspection, mapping, and logistic routines. When dispatched on autonomous missions, drones require an intelligent decision-making system for trajectory planning and tour optimization. Given the limited capacity of their onboard batteries, a key design challenge is to ensure the underlying algorithms can efficiently optimize the mission objectives along with recharging operations during long-haul flights. With this in view, the present work undertakes a comprehensive study on automated tour management systems for an energy-constrained drone: (1) We construct a machine learning model that estimates the energy expenditure of typical multi-rotor drones while accounting for real-world aspects and extrinsic meteorological factors. (2) Leveraging this model, the joint program of flight mission planning and recharging optimization is formulated as a multi-criteria Asymmetric Traveling Salesman Problem (ATSP), wherein a drone seeks for the time-optimal energy-feasible tour that visits all the target sites and refuels whenever necessary. (3) We devise an efficient approximation algorithm with provable worst-case performance guarantees and implement it in a drone management system, which supports real-time flight path tracking and re- computation in dynamic environments. (4) The effectiveness and practicality of the proposed approach are validated through extensive numerical simulations as well as real-world experiments. Note to Practitioners—This study is stimulated by the need for developing pragmatic and provably efficient automated tour management systems for UAVs deployed on energy-constrained, long-distance flight missions. As such, UAVs provide a nifty platform for facilitating environmental monitoring, disaster management, transport of medical supplies, as well as expediting last-mile deliveries. However, existing path planners generally fall short of capturing several crucial aspects, such as detailed power consumption model (e.g., factoring in payload, wind speed and direction) or performance guarantees, potentially leading to underutilized or infeasible routing decisions. To address these issues, the present work proposes a theoretically-backed routing approach with a certifiable degree of optimality and develops an effective, practical power consumption evaluation model for multi-rotor UAVs, verified on multiple drone models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
6秒前
洲洲完成签到 ,获得积分10
6秒前
阔达的水壶完成签到 ,获得积分10
7秒前
米奇发布了新的文献求助10
7秒前
李爱国应助llg采纳,获得10
8秒前
平淡的天宇完成签到,获得积分10
8秒前
moon发布了新的文献求助10
11秒前
11秒前
13秒前
pluto应助星辰采纳,获得20
16秒前
谢富杰发布了新的文献求助10
17秒前
cgs完成签到 ,获得积分10
19秒前
Lojong完成签到,获得积分10
19秒前
20秒前
韩hqf发布了新的文献求助10
21秒前
22秒前
Lucas应助研友_89Nm7L采纳,获得50
24秒前
搜集达人应助潇洒的平松采纳,获得10
24秒前
超爱茶多酚完成签到,获得积分10
24秒前
ChiMing发布了新的文献求助20
27秒前
科研通AI5应助tdtk采纳,获得10
31秒前
烟花应助baolongzhan采纳,获得30
32秒前
自信安荷完成签到,获得积分10
34秒前
ChiMing完成签到,获得积分20
37秒前
乐乐应助科研通管家采纳,获得10
38秒前
科研通AI5应助科研通管家采纳,获得10
38秒前
上官若男应助科研通管家采纳,获得10
38秒前
orixero应助科研通管家采纳,获得10
38秒前
彭于晏应助科研通管家采纳,获得10
39秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
机灵柚子应助科研通管家采纳,获得10
39秒前
英俊的铭应助科研通管家采纳,获得10
39秒前
大个应助科研通管家采纳,获得10
39秒前
搜集达人应助科研通管家采纳,获得10
39秒前
研友_VZG7GZ应助科研通管家采纳,获得10
39秒前
赘婿应助科研通管家采纳,获得10
39秒前
39秒前
39秒前
Hello应助科研通管家采纳,获得10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777834
求助须知:如何正确求助?哪些是违规求助? 3323321
关于积分的说明 10213925
捐赠科研通 3038575
什么是DOI,文献DOI怎么找? 1667549
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758290