Deep Learning-Based UAV Detection in Pulse-Doppler Radar

计算机科学 恒虚警率 人工智能 目标检测 假警报 探测器 雷达 卷积神经网络 计算机视觉 模式识别(心理学) 深度学习 电信
作者
Chenxing Wang,Jiangmin Tian,Jiuwen Cao,Xiaohong Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-12 被引量:64
标识
DOI:10.1109/tgrs.2021.3104907
摘要

With the popularity of unmanned aerial vehicles (UAVs), how to conduct automatic and effective detection to prevent unauthorized flying has become an important issue. The conventional constant false alarm rate (CFAR) detector based on radar signal has shown advantages in moving target detection. However, the CFAR-based detectors are strongly dependent on some manual experience, such as the ambient noise distribution estimation and the detection windows' size selection, and usually suffered poor performance on small UAV detection due to the weak signal. Inspired by the success of deep learning (DL) on natural scene object detection, this article tries to explore a DL-based method for UAV detection in pulse-Doppler radar. Concretely, we propose a convolutional neural network (CNN) with two heads: one for the classification of the input range-Doppler map patch into target present or target absent and the other for the regression of offset between the target and the patch center. Then, based on the output of the network, a nonmaximum suppression (NMS) mechanism composed of probability-based initial recognition, distribution density-based recognition, and voting-based regression is developed to reduce false alarms as well as control the false alarms. Finally, experiments on both simulated data and real data are carried out, and it is shown that the proposed method can locate the target more accurately and achieve a much lower false alarm rate at a comparable detection rate than CFAR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小雨堂完成签到 ,获得积分10
6秒前
苦逼的科研汪完成签到 ,获得积分10
10秒前
10秒前
Hysen_L完成签到 ,获得积分10
13秒前
完美世界应助科研通管家采纳,获得10
14秒前
JiegeSCI完成签到,获得积分10
14秒前
852应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
14秒前
赘婿应助科研通管家采纳,获得30
15秒前
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
15秒前
彭于彦祖应助科研通管家采纳,获得20
15秒前
赘婿应助科研通管家采纳,获得30
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
HalfGumps完成签到,获得积分10
16秒前
追光发布了新的文献求助10
18秒前
21秒前
动漫大师发布了新的文献求助10
26秒前
27秒前
厉不厉害你坤哥完成签到,获得积分10
29秒前
xk要发nature子刊完成签到,获得积分10
30秒前
32秒前
动漫大师发布了新的文献求助10
32秒前
十二完成签到 ,获得积分10
34秒前
球球发布了新的文献求助10
35秒前
35秒前
机智的觅风完成签到,获得积分10
35秒前
FashionBoy应助追光采纳,获得10
40秒前
嗳7完成签到 ,获得积分10
45秒前
45秒前
球球完成签到,获得积分10
48秒前
学不死就往死里学完成签到,获得积分10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776521
求助须知:如何正确求助?哪些是违规求助? 3322019
关于积分的说明 10208579
捐赠科研通 3037315
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757878