线性化
反问题
独特性
辐射传输
扩散
衰减系数
吸收(声学)
理论(学习稳定性)
数学分析
非线性系统
对流扩散方程
反向
扩散方程
工作(物理)
大流量近似
数学
物理
光学
热力学
计算机科学
几何学
量子力学
经济
机器学习
经济
服务(商务)
统计
作者
Ru-Yu Lai,Kui Ren,Ting Zhou
摘要
Motivated by applications in imaging nonlinear optical absorption by photoacoustic tomography, we study in this work inverse coefficient problems for a semilinear radiative transport equation and its diffusion approximation with internal data that are functionals of the coefficients and the solutions to the equations. Based on the techniques of first- and second-order linearization, we derive uniqueness and stability results for the inverse problems. For uncertainty quantification purposes, we also establish the stability of the reconstruction of the absorption coefficients with respect to the change in the scattering coefficient.
科研通智能强力驱动
Strongly Powered by AbleSci AI