A decision support system for multimodal brain tumor classification using deep learning

人工智能 计算机科学 模式识别(心理学) 多类分类 支持向量机 深度学习 分类器(UML) 机器学习 特征选择 人工神经网络 峰度 数学 统计
作者
Muhammad Imran Sharif,Muhammad Attique Khan,Musaed Alhussein,Khursheed Aurangzeb,Mudassar Raza
出处
期刊:Complex & Intelligent Systems 卷期号:8 (4): 3007-3020 被引量:197
标识
DOI:10.1007/s40747-021-00321-0
摘要

Abstract Multiclass classification of brain tumors is an important area of research in the field of medical imaging. Since accuracy is crucial in the classification, a number of techniques are introduced by computer vision researchers; however, they still face the issue of low accuracy. In this article, a new automated deep learning method is proposed for the classification of multiclass brain tumors. To realize the proposed method, the Densenet201 Pre-Trained Deep Learning Model is fine-tuned and later trained using a deep transfer of imbalanced data learning. The features of the trained model are extracted from the average pool layer, which represents the very deep information of each type of tumor. However, the characteristics of this layer are not sufficient for a precise classification; therefore, two techniques for the selection of features are proposed. The first technique is Entropy–Kurtosis-based High Feature Values (EKbHFV) and the second technique is a modified genetic algorithm (MGA) based on metaheuristics. The selected features of the GA are further refined by the proposed new threshold function. Finally, both EKbHFV and MGA-based features are fused using a non-redundant serial-based approach and classified using a multiclass SVM cubic classifier. For the experimental process, two datasets, including BRATS2018 and BRATS2019, are used without increase and have achieved an accuracy of more than 95%. The precise comparison of the proposed method with other neural nets shows the significance of this work.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小蛮样完成签到,获得积分10
刚刚
qq发布了新的文献求助10
刚刚
阳光冰颜完成签到,获得积分10
1秒前
独特的冷风完成签到,获得积分20
1秒前
1秒前
不懂白完成签到 ,获得积分10
1秒前
悦耳虔纹完成签到,获得积分10
2秒前
顺利毕业发布了新的文献求助10
2秒前
俭朴的发带完成签到,获得积分10
2秒前
3秒前
文文完成签到,获得积分10
3秒前
科研通AI2S应助Sayhai采纳,获得10
3秒前
3秒前
4秒前
炖地瓜完成签到 ,获得积分10
4秒前
4秒前
稳重向南发布了新的文献求助10
4秒前
4秒前
苹果寒香完成签到,获得积分10
5秒前
活力小夏发布了新的文献求助20
5秒前
慕青应助珍珍采纳,获得10
5秒前
青雉完成签到,获得积分10
5秒前
zhusealin完成签到,获得积分10
6秒前
思源应助邱静采纳,获得10
6秒前
yu完成签到,获得积分10
7秒前
研0发布了新的文献求助10
7秒前
YRX完成签到,获得积分10
7秒前
8R60d8应助精明的忘幽采纳,获得10
7秒前
7秒前
7秒前
7秒前
浮游应助无定采纳,获得10
8秒前
Hello应助Snoopy采纳,获得10
8秒前
8秒前
李爱国应助lll采纳,获得10
8秒前
东皇太一完成签到,获得积分10
8秒前
荣枫发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
苯丙氨酸解氨酶的祖先序列重建及其催化性能 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4835575
求助须知:如何正确求助?哪些是违规求助? 4139231
关于积分的说明 12812713
捐赠科研通 3883419
什么是DOI,文献DOI怎么找? 2135490
邀请新用户注册赠送积分活动 1155584
关于科研通互助平台的介绍 1054989