Efficient Semi-supervised Gross Target Volume of Nasopharyngeal Carcinoma Segmentation via Uncertainty Rectified Pyramid Consistency

计算机科学 分割 棱锥(几何) 基本事实 人工智能 稳健性(进化) 模式识别(心理学) 一致性(知识库) 图像分割 卷积神经网络 像素 计算机视觉 数学 几何学 生物化学 化学 基因
作者
Xiangde Luo,Wenjun Liao,Jieneng Chen,Tao Song,Yinan Chen,Shichuan Zhang,Nianyong Chen,Guotai Wang,Shaoting Zhang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 318-329 被引量:133
标识
DOI:10.1007/978-3-030-87196-3_30
摘要

Gross Target Volume (GTV) segmentation plays an irreplaceable role in radiotherapy planning for Nasopharyngeal Carcinoma (NPC). Despite that Convolutional Neural Networks (CNN) have achieved good performance for this task, they rely on a large set of labeled images for training, which is expensive and time-consuming to acquire. In this paper, we propose a novel framework with Uncertainty Rectified Pyramid Consistency (URPC) regularization for semi-supervised NPC GTV segmentation. Concretely, we extend a backbone segmentation network to produce pyramid predictions at different scales. The pyramid predictions network (PPNet) is supervised by the ground truth of labeled images and a multi-scale consistency loss for unlabeled images, motivated by the fact that prediction at different scales for the same input should be similar and consistent. However, due to the different resolution of these predictions, encouraging them to be consistent at each pixel directly has low robustness and may lose some fine details. To address this problem, we further design a novel uncertainty rectifying module to enable the framework to gradually learn from meaningful and reliable consensual regions at different scales. Experimental results on a dataset with 258 NPC MR images showed that with only 10% or 20% images labeled, our method largely improved the segmentation performance by leveraging the unlabeled images, and it also outperformed five state-of-the-art semi-supervised segmentation methods. Moreover, when only 50% labeled images, URPC achieved an average Dice score of 82.74% that was close to fully supervised learning. Code is available at: https://github.com/HiLab-git/SSL4MIS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浅时光完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
xty发布了新的文献求助10
2秒前
2秒前
111发布了新的文献求助10
2秒前
ArkZ完成签到 ,获得积分10
2秒前
陈昭琼发布了新的文献求助10
2秒前
小二郎应助小何0404采纳,获得10
3秒前
3秒前
yanyanqin完成签到,获得积分10
4秒前
wanci应助12138采纳,获得10
4秒前
4秒前
乔介一完成签到 ,获得积分10
5秒前
qc发布了新的文献求助10
5秒前
执着的水杯完成签到,获得积分10
5秒前
张瑞彬完成签到,获得积分10
5秒前
5秒前
5秒前
PP完成签到,获得积分10
5秒前
6秒前
长孙归尘发布了新的文献求助10
6秒前
YYYY发布了新的文献求助10
6秒前
1+1应助111采纳,获得10
6秒前
我是老大应助111采纳,获得10
6秒前
6秒前
酷波er应助CMJ采纳,获得10
7秒前
7秒前
7秒前
朴素的傲菡完成签到,获得积分20
8秒前
0per发布了新的文献求助10
9秒前
9秒前
科研通AI5应助Jrssion采纳,获得10
9秒前
lw完成签到,获得积分10
9秒前
9秒前
现代的擎苍完成签到,获得积分10
10秒前
nic完成签到 ,获得积分10
10秒前
hwezhu发布了新的文献求助10
11秒前
整齐红酒发布了新的文献求助10
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838043
求助须知:如何正确求助?哪些是违规求助? 3380287
关于积分的说明 10513442
捐赠科研通 3099903
什么是DOI,文献DOI怎么找? 1707264
邀请新用户注册赠送积分活动 821558
科研通“疑难数据库(出版商)”最低求助积分说明 772750