Contrast-enhanced to noncontrast CT transformation via an adjacency content-transfer-based deep subtraction residual neural network

计算机科学 人工智能 相似性(几何) 残余物 邻接表 减法 核医学 衰减 模式识别(心理学) 对比度(视觉) 医学 算法 数学 图像(数学) 光学 物理 算术
作者
Xianfan Gu,Zhou Liu,Jinjie Zhou,Honghong Luo,Canwen Che,Qian Yang,Lijian Liu,Yongfeng Yang,Xin Liu,Hairong Zheng,Dong Liang,Dehong Luo,Zhanli Hu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (14): 145017-145017 被引量:4
标识
DOI:10.1088/1361-6560/ac0758
摘要

Abstract To reduce overall patient radiation exposure in some clinical scenarios (since cancer patients need frequent follow-ups), noncontrast CT is not used in some institutions. However, although less desirable, noncontrast CT could provide additional important information. In this article, we propose a deep subtraction residual network based on adjacency content transfer to reconstruct noncontrast CT from contrast CT and maintain image quality comparable to that of a CT scan originally acquired without contrast. To address the slight structural dissimilarity of the paired CT images (noncontrast CT and contrast CT) due to involuntary physiological motion, we introduce a contrastive loss network derived from the adjacency content-transfer strategy. We evaluate the results of various similarity metrics (MSE, SSIM, NRMSE, PSNR, MAE) and the fitting curve (HU distribution) of the output mapping to estimate the reconstruction performance of the algorithm. To build the model, we randomly select a total of 15,405 CT paired images (noncontrast CT and contrast-enhanced CT) for training and 10,270 CT paired images for testing. The proposed algorithm preserves the robust structures from the contrast-enhanced CT scans and learns the noncontrast attenuation pattern from the noncontrast CT scans. During the evaluation, the deep subtraction residual network achieves higher MSE, MAE, NRMSE, and PSNR scores (by 30%) than those of the baseline models (BEGAN, CycleGAN, Pixel2Pixel) and better simulates the HU curve of noncontrast CT attenuation. After validation based on an analysis of the experimental results, we can report that the noncontrast CT images reconstructed by our proposed algorithm not only preserve the high-quality structures from the contrast-enhanced CT images, but also mimic the CT attenuation of the originally acquired noncontrast CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Sun发布了新的文献求助10
2秒前
万能图书馆应助0610采纳,获得10
2秒前
赘婿应助Floria采纳,获得10
3秒前
3秒前
迅速服饰完成签到,获得积分10
4秒前
5秒前
7秒前
云龙应助活泼稀采纳,获得10
8秒前
8秒前
刘小天发布了新的文献求助10
8秒前
PHW发布了新的文献求助10
8秒前
思源应助鱼柒采纳,获得10
8秒前
赘婿应助KKK采纳,获得10
8秒前
9秒前
10秒前
小鹿完成签到,获得积分10
11秒前
outlast完成签到,获得积分10
11秒前
11秒前
Jasper应助单纯凝丹采纳,获得10
11秒前
12秒前
吃不饱发布了新的文献求助10
13秒前
陶醉的念之完成签到,获得积分10
14秒前
小熊关注了科研通微信公众号
14秒前
15秒前
ameng_xu发布了新的文献求助10
15秒前
15秒前
今后应助淡淡的鸽子采纳,获得10
16秒前
16秒前
昨夜星完成签到,获得积分10
17秒前
317发布了新的文献求助10
18秒前
华仔应助livinglast采纳,获得10
19秒前
可爱的函函应助PHW采纳,获得10
19秒前
19秒前
小蘑菇应助淡定的可兰采纳,获得10
20秒前
Noah完成签到 ,获得积分0
21秒前
21秒前
顾矜应助迅速服饰采纳,获得10
22秒前
Sun完成签到,获得积分10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643099
求助须知:如何正确求助?哪些是违规求助? 4760606
关于积分的说明 15020012
捐赠科研通 4801508
什么是DOI,文献DOI怎么找? 2566806
邀请新用户注册赠送积分活动 1524714
关于科研通互助平台的介绍 1484256