Exploring associations between prenatal exposure to multiple endocrine disruptors and birth weight with exposure continuum mapping

生命银行 医学 多溴联苯醚 生物标志物 生理学 怀孕 暴露评估 环境卫生 产前暴露 妊娠期 化学 生物 生物信息学 污染物 遗传学 有机化学
作者
John L. Pearce,Brian Neelon,Michael S. Bloom,Jessie P. Buckley,Cande V. Ananth,Frederica P. Perera,John E. Vena,Kelly J. Hunt
出处
期刊:Environmental Research [Elsevier BV]
卷期号:200: 111386-111386 被引量:21
标识
DOI:10.1016/j.envres.2021.111386
摘要

Improved understanding of how prenatal exposure to environmental mixtures influences birth weight or other adverse outcomes is essential in protecting child health.We illustrate a novel exposure continuum mapping (ECM) framework that combines the self-organizing map (SOM) algorithm with generalized additive modeling (GAM) in order to integrate spatially-correlated learning into the study mixtures of environmental chemicals. We demonstrate our method using biomarker data on chemical mixtures collected from a diverse mother-child cohort.We obtained biomarker concentrations for 16 prevalent endocrine disrupting chemicals (EDCs) collected in the first-trimester from a large, ethnically/racially diverse cohort of healthy pregnant women (n = 604) during 2009-2012. This included 4 organochlorine pesticides (OCPs), 4 polybrominated diphenyl ethers (PBDEs), 4 polychlorinated biphenyls (PCBs), and 4 perfluoroalkyl substances (PFAS). We applied a two-stage exposure continuum mapping (ECM) approach to investigate the combined impact of the EDCs on birth weight. First, we analyzed our EDC data with SOM in order to reduce the dimensionality of our exposure matrix into a two-dimensional grid (i.e., map) where nodes depict the types of EDC mixture profiles observed within our data. We define this map as the 'exposure continuum map', as the gridded surface reflects a continuous sequence of exposure profiles where adjacent nodes are composed of similar mixtures and profiles at more distal nodes are more distinct. Lastly, we used GAM to estimate a joint-dose response based on the coordinates of our ECM in order to capture the relationship between participant location on the ECM and infant birth weight after adjusting for maternal age, race/ethnicity, pre-pregnancy body mass index (BMI), education, serum cotinine, total plasma lipids, and infant sex. Single chemical regression models were applied to facilitate comparison.We found that an ECM with 36 mixture profiles retained 70% of the total variation in the exposure data. Frequency analysis showed that the most common profiles included relatively low concentrations for most EDCs (~10%) and that profiles with relatively higher concentrations (for single or multiple EDCs) tended to be rarer (~1%) but more distinct. Estimation of a joint-dose response function revealed that lower birth weights mapped to locations where profile compositions were dominated by relatively high PBDEs and select OCPs. Higher birth weights mapped to locations where profiles consisted of higher PCBs. These findings agreed well with results from single chemical models.Findings from our study revealed a wide range of prenatal exposure scenarios and found that combinations exhibiting higher levels of PBDEs were associated with lower birth weight and combinations with higher levels of PCBs and PFAS were associated with increased birth weight. Our ECM approach provides a promising framework for supporting studies of other exposure mixtures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一期一会完成签到,获得积分10
2秒前
Haonan完成签到,获得积分10
5秒前
小马甲应助无奈曼云采纳,获得10
5秒前
7秒前
8秒前
9秒前
科研通AI2S应助谢富杰采纳,获得10
9秒前
瓦罐完成签到 ,获得积分10
10秒前
llg发布了新的文献求助10
10秒前
踏雪飞鸿发布了新的文献求助10
13秒前
不要引力完成签到,获得积分10
15秒前
15秒前
15秒前
111发布了新的文献求助10
16秒前
16秒前
18秒前
无花果应助小化化爱学习采纳,获得10
18秒前
蝈蝈完成签到,获得积分10
19秒前
cuizaixu发布了新的文献求助10
20秒前
大魁发布了新的文献求助10
20秒前
闪闪雅阳发布了新的文献求助10
21秒前
gao完成签到,获得积分10
21秒前
22秒前
体贴的小刺猬完成签到,获得积分10
23秒前
代沁完成签到,获得积分10
23秒前
夏虫完成签到,获得积分10
23秒前
平凡之路发布了新的文献求助10
23秒前
深情的若冰完成签到,获得积分10
23秒前
后会无期完成签到,获得积分10
24秒前
CipherSage应助sugar采纳,获得10
24秒前
小点点cy_发布了新的文献求助10
25秒前
科研通AI5应助井野浮采纳,获得30
25秒前
27秒前
28秒前
田様应助王可爱宝贝旭采纳,获得10
28秒前
大魁完成签到,获得积分10
29秒前
有人应助平凡之路采纳,获得10
31秒前
猪猪完成签到 ,获得积分10
31秒前
科研通AI5应助ChiMing采纳,获得20
32秒前
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777834
求助须知:如何正确求助?哪些是违规求助? 3323349
关于积分的说明 10213997
捐赠科研通 3038590
什么是DOI,文献DOI怎么找? 1667553
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758290