A deep learning approach based on a data-driven tool for classification and prediction of thermoelastic wave’s band structures for phononic crystals

热弹性阻尼 人工神经网络 材料科学 Crystal(编程语言) 人工智能 预处理器 热的 声学 计算机科学 算法 物理 气象学 程序设计语言
作者
Shirin Javadi,Ali Maghami,Seyed Mahmoud Hosseini
出处
期刊:Mechanics of Advanced Materials and Structures [Taylor & Francis]
卷期号:29 (27): 6612-6625 被引量:28
标识
DOI:10.1080/15376494.2021.1983088
摘要

This article deals with the data-driven prediction of the band structures of thermoelastic waves in the nano-scale phononic crystal beams considering nano-size effects. The computational intelligence methods are developed using a data-driven tool to discover the design space of phononic crystals, which are subjected to thermal shock loading. For this purpose, a rich dataset is created utilizing an analytical solution, which was previously proposed for the nonlocal coupled thermoelasticity analysis in a nano-sized phononic crystal beam. The preprocessing methods, hyperparameters optimization, and shallow and deep neural networks are used to classify and predict the bandgaps. Also, according to the created dataset and the data-driven method, the phononic crystal feature importance and behavior based on the design parameters are assessed in detail. The detailed investigation reveals the importance of the design parameters according to the deep neural network's results. It is demonstrated by numerical results that the proposed final data-driven model can predict the characteristics of the phononic crystals pretty well. Also, the results show that the deep neural network outperforms the shallow neural network for the classification and prediction of the band structures. The final results can be a helpful tool to have a fast numerical framework for the prediction of photonic crystals' bandgaps before the application of time-consuming accurate frameworks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ting5260发布了新的文献求助10
1秒前
onmymark完成签到,获得积分10
1秒前
丘比特应助打水不打饭采纳,获得10
1秒前
天天快乐应助打水不打饭采纳,获得10
1秒前
miscell应助打水不打饭采纳,获得10
1秒前
CipherSage应助小孙采纳,获得10
1秒前
刘珍荣发布了新的文献求助10
2秒前
兴奋惜寒发布了新的文献求助10
3秒前
5秒前
ZCY发布了新的文献求助10
7秒前
7秒前
研友_gnv61n完成签到,获得积分0
9秒前
从容半仙发布了新的文献求助10
11秒前
华仔应助mx采纳,获得10
11秒前
12秒前
Yuri完成签到,获得积分10
12秒前
琪琪发布了新的文献求助10
12秒前
兔斯基完成签到 ,获得积分10
13秒前
15秒前
Yuri发布了新的文献求助10
16秒前
鸣笛应助无敌小天天采纳,获得30
16秒前
Pyotr完成签到,获得积分10
17秒前
18秒前
牛牛完成签到,获得积分10
19秒前
斯文败类应助阳光的寻琴采纳,获得10
19秒前
20秒前
小孙发布了新的文献求助10
23秒前
小白完成签到 ,获得积分20
25秒前
万能图书馆应助yongtao采纳,获得10
26秒前
脑洞疼应助无敌小天天采纳,获得10
27秒前
sisi完成签到,获得积分20
28秒前
AX完成签到,获得积分10
30秒前
30秒前
华仔应助典雅的俊驰采纳,获得10
31秒前
基金中中中完成签到,获得积分10
32秒前
33秒前
onmymark发布了新的文献求助10
33秒前
36秒前
36秒前
1.1发布了新的文献求助10
37秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899749
求助须知:如何正确求助?哪些是违规求助? 3444358
关于积分的说明 10834679
捐赠科研通 3169272
什么是DOI,文献DOI怎么找? 1751092
邀请新用户注册赠送积分活动 846457
科研通“疑难数据库(出版商)”最低求助积分说明 789191