Classification and Regression by randomForest

随机森林 Boosting(机器学习) 过度拟合 机器学习 统计 计算机科学 人工智能 模式识别(心理学) 数学 数据挖掘 人工神经网络
作者
Andy Liaw,Matthew C. Wiener
摘要

Recently there has been a lot of interest in “ensemble learning” — methods that generate many classifiers and aggregate their results. Two well-known methods are boosting (see, e.g., Shapire et al., 1998) and bagging Breiman (1996) of classification trees. In boosting, successive trees give extra weight to points incorrectly predicted by earlier predictors. In the end, a weighted vote is taken for prediction. In bagging, successive trees do not depend on earlier trees — each is independently constructed using a bootstrap sample of the data set. In the end, a simple majority vote is taken for prediction. Breiman (2001) proposed random forests, which add an additional layer of randomness to bagging. In addition to constructing each tree using a different bootstrap sample of the data, random forests change how the classification or regression trees are constructed. In standard trees, each node is split using the best split among all variables. In a random forest, each node is split using the best among a subset of predictors randomly chosen at that node. This somewhat counterintuitive strategy turns out to perform very well compared to many other classifiers, including discriminant analysis, support vector machines and neural networks, and is robust against overfitting (Breiman, 2001). In addition, it is very user-friendly in the sense that it has only two parameters (the number of variables in the random subset at each node and the number of trees in the forest), and is usually not very sensitive to their values. The randomForest package provides an R interface to the Fortran programs by Breiman and Cutler (available at http://www.stat.berkeley.edu/ users/breiman/). This article provides a brief introduction to the usage and features of the R functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
北地风情应助果果采纳,获得20
2秒前
充电宝应助xlk2222采纳,获得10
2秒前
2秒前
felix发布了新的文献求助30
2秒前
Ruby完成签到,获得积分10
2秒前
weiv完成签到,获得积分10
3秒前
ay完成签到,获得积分10
3秒前
牛顿的苹果完成签到,获得积分10
3秒前
慕青应助前方盎然采纳,获得10
3秒前
舟舟发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助30
4秒前
Aulalala完成签到,获得积分10
5秒前
weiv发布了新的文献求助20
5秒前
free完成签到,获得积分10
6秒前
今后应助磕磕采纳,获得80
6秒前
Snowy周完成签到,获得积分10
7秒前
8秒前
所所应助典雅的纸飞机采纳,获得10
8秒前
情怀应助无情的镜子采纳,获得10
9秒前
打打应助J_C_Van采纳,获得10
9秒前
胡图图发布了新的文献求助10
9秒前
开心谷秋完成签到,获得积分10
9秒前
思源应助WRZ采纳,获得10
10秒前
万泉部诗人完成签到,获得积分10
10秒前
我是老大应助sirius采纳,获得10
11秒前
nanan完成签到,获得积分10
11秒前
可乐给可乐的求助进行了留言
13秒前
小冉完成签到,获得积分10
13秒前
紫熊发布了新的文献求助10
14秒前
SC完成签到,获得积分10
15秒前
小h完成签到,获得积分10
16秒前
17秒前
Ian_Zhang应助shuang0116采纳,获得10
17秒前
18秒前
米线儿完成签到,获得积分10
20秒前
Criminology34应助小冉采纳,获得10
20秒前
山东鼎和发布了新的文献求助10
21秒前
章传奇完成签到,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419966
求助须知:如何正确求助?哪些是违规求助? 4535178
关于积分的说明 14148588
捐赠科研通 4451975
什么是DOI,文献DOI怎么找? 2441982
邀请新用户注册赠送积分活动 1433488
关于科研通互助平台的介绍 1410732