TTSAD: TCN-Transformer-SVDD Model for Anomaly Detection in air traffic ADS-B data

异常检测 支持向量机 计算机科学 实时计算 雷电探测 恒虚警率 偏移量(计算机科学) 数据挖掘 人工智能 雷雨 海洋学 程序设计语言 地质学
作者
Peng Luo,Buhong Wang,Jiwei Tian
出处
期刊:Computers & Security [Elsevier BV]
卷期号:141: 103840-103840 被引量:6
标识
DOI:10.1016/j.cose.2024.103840
摘要

ADS-B (Automatic Dependent Surveillance-Broadcast) is a key technology in the new generation air traffic surveillance system. However, it is vulnerable to various cyber attacks because it broadcasts data in plaintext format and lacks authentication mechanism. Previous research has rarely considered the application scenarios of ATM (Air Traffic Management) in commercial air transport, and there are the problems of low anomaly detection rate and the non-lightweight model. This paper focuses on ADS-B anomaly detection under the background of ATM. We propose the TTSAD (TCN-Transformer-SVDD Model for Anomaly Detection) model, which aims to address the problems of existing ADS-B anomaly detection methods including inadequate considerations of long-term dependencies and distribution characteristic, the non-lightweight model and the poor adaptive threshold. First, ADS-B time series is input into TCN (Temporal Convolutional Network) prediction module which predicts data in an accurate and quick way using causal convolution and dilated convolution. Then, the predicted ADS-B time series is input into Transformer reconstruction module which reconstructs data accurately and quickly based on Self-Attention and Multi-Head Attention mechanism. Finally, the difference values between the reconstructed values and the real values are input into SVDD (Support Vector Data Description) threshold determination module for an optimal threshold. Experimental results show that the TTSAD model can detect ADS-B anomaly data generated from attacks such as altitude slow offset and DOS (Denial of Service). The TTSAD model is superior to other machine learning methods in terms of recall rate, detection rate, accuracy rate, missing detection rate and false alarm rate. Furthermore, compared with other deep learning methods including LSTM, GRU and LSTM-AE, the TTSAD model has a shorter training time and a lightweight characteristic. This approach guarantees the information security of ADS-B, thereby improving the operational security of ATM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Singularity发布了新的文献求助10
2秒前
黄天发布了新的文献求助10
6秒前
科研通AI5应助轻雨采纳,获得10
6秒前
8秒前
宓凌青发布了新的文献求助10
9秒前
drizzling完成签到,获得积分10
9秒前
Chandler完成签到,获得积分10
9秒前
lyy完成签到 ,获得积分10
10秒前
10秒前
纯情的严青完成签到,获得积分10
11秒前
nicky完成签到 ,获得积分10
11秒前
12秒前
13秒前
13秒前
三里墩头完成签到,获得积分10
14秒前
威武的蘑菇完成签到,获得积分10
14秒前
15秒前
小熙完成签到 ,获得积分10
16秒前
樱桃发布了新的文献求助10
17秒前
zxj完成签到,获得积分10
17秒前
宓凌青完成签到,获得积分20
18秒前
乔心发布了新的文献求助10
18秒前
19秒前
Anne完成签到,获得积分10
19秒前
北过完成签到,获得积分10
20秒前
柒柒完成签到,获得积分10
21秒前
孙燕应助乔心采纳,获得10
22秒前
田様应助乔心采纳,获得10
22秒前
22秒前
smile完成签到,获得积分10
22秒前
腾飞完成签到,获得积分10
23秒前
从容的灵凡完成签到,获得积分10
24秒前
陈志亨完成签到,获得积分10
24秒前
纯真皮卡丘完成签到 ,获得积分10
25秒前
sangyujie发布了新的文献求助10
25秒前
Lucas应助舒心的半仙采纳,获得10
25秒前
吴宵完成签到,获得积分10
26秒前
ckz完成签到,获得积分10
27秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845724
求助须知:如何正确求助?哪些是违规求助? 3387967
关于积分的说明 10551319
捐赠科研通 3108649
什么是DOI,文献DOI怎么找? 1712973
邀请新用户注册赠送积分活动 824550
科研通“疑难数据库(出版商)”最低求助积分说明 774891