TTSAD: TCN-Transformer-SVDD Model for Anomaly Detection in air traffic ADS-B data

异常检测 支持向量机 计算机科学 实时计算 雷电探测 恒虚警率 偏移量(计算机科学) 数据挖掘 人工智能 雷雨 海洋学 地质学 程序设计语言
作者
Peng Luo,Buhong Wang,Jiwei Tian
出处
期刊:Computers & Security [Elsevier BV]
卷期号:141: 103840-103840 被引量:8
标识
DOI:10.1016/j.cose.2024.103840
摘要

ADS-B (Automatic Dependent Surveillance-Broadcast) is a key technology in the new generation air traffic surveillance system. However, it is vulnerable to various cyber attacks because it broadcasts data in plaintext format and lacks authentication mechanism. Previous research has rarely considered the application scenarios of ATM (Air Traffic Management) in commercial air transport, and there are the problems of low anomaly detection rate and the non-lightweight model. This paper focuses on ADS-B anomaly detection under the background of ATM. We propose the TTSAD (TCN-Transformer-SVDD Model for Anomaly Detection) model, which aims to address the problems of existing ADS-B anomaly detection methods including inadequate considerations of long-term dependencies and distribution characteristic, the non-lightweight model and the poor adaptive threshold. First, ADS-B time series is input into TCN (Temporal Convolutional Network) prediction module which predicts data in an accurate and quick way using causal convolution and dilated convolution. Then, the predicted ADS-B time series is input into Transformer reconstruction module which reconstructs data accurately and quickly based on Self-Attention and Multi-Head Attention mechanism. Finally, the difference values between the reconstructed values and the real values are input into SVDD (Support Vector Data Description) threshold determination module for an optimal threshold. Experimental results show that the TTSAD model can detect ADS-B anomaly data generated from attacks such as altitude slow offset and DOS (Denial of Service). The TTSAD model is superior to other machine learning methods in terms of recall rate, detection rate, accuracy rate, missing detection rate and false alarm rate. Furthermore, compared with other deep learning methods including LSTM, GRU and LSTM-AE, the TTSAD model has a shorter training time and a lightweight characteristic. This approach guarantees the information security of ADS-B, thereby improving the operational security of ATM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
调皮的巧凡完成签到,获得积分10
1秒前
科研通AI5应助zhengkuang采纳,获得10
2秒前
GONGLI发布了新的文献求助10
4秒前
魔幻傲霜完成签到,获得积分10
5秒前
田様应助TT采纳,获得10
5秒前
hhhh完成签到,获得积分10
5秒前
找文献完成签到,获得积分10
6秒前
6秒前
6秒前
郭囯完成签到,获得积分10
8秒前
奇奇蒂蒂完成签到 ,获得积分10
8秒前
9秒前
天天快乐应助麦奇采纳,获得30
10秒前
10秒前
12秒前
温柔的老头完成签到,获得积分10
12秒前
会飞的猪发布了新的文献求助10
12秒前
12秒前
dew应助火星上映易采纳,获得10
12秒前
cannon8发布了新的文献求助30
14秒前
思源应助TT采纳,获得10
14秒前
zhengkuang发布了新的文献求助10
14秒前
14秒前
15秒前
蜡笔小新发布了新的文献求助10
15秒前
Jasper应助GONGLI采纳,获得10
16秒前
16秒前
科研通AI5应助yu采纳,获得10
16秒前
wali完成签到 ,获得积分0
17秒前
情怀应助阿东c采纳,获得10
17秒前
小森华东完成签到 ,获得积分10
18秒前
叶y发布了新的文献求助10
19秒前
21秒前
李爱国应助TT采纳,获得10
21秒前
22秒前
小宁完成签到,获得积分10
23秒前
23秒前
GONGLI完成签到,获得积分10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
ESDU TM 218 An example of air data pressure correction with a dependency on engine power settings 400
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5035356
求助须知:如何正确求助?哪些是违规求助? 4268471
关于积分的说明 13307103
捐赠科研通 4079070
什么是DOI,文献DOI怎么找? 2231204
邀请新用户注册赠送积分活动 1239511
关于科研通互助平台的介绍 1165307