亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A CT-based integrated model for preoperative prediction of occult lymph node metastasis in early tongue cancer

神秘的 淋巴结转移 医学 舌头 放射科 癌症 淋巴结 转移 舌肿瘤 肿瘤科 内科学 病理 替代医学
作者
Wei Han,Yingshu Wang,Tao Li,Yuke Dong,Yanwei Dang,Liang He,Lianfang Xu,Yuhao Zhou,Yujie Li,Xudong Wang
出处
期刊:PeerJ [PeerJ]
卷期号:12: e17254-e17254 被引量:8
标识
DOI:10.7717/peerj.17254
摘要

Background Occult lymph node metastasis (OLNM) is an essential prognostic factor for early-stage tongue cancer (cT1-2N0M0) and a determinant of treatment decisions. Therefore, accurate prediction of OLNM can significantly impact the clinical management and outcomes of patients with tongue cancer. The aim of this study was to develop and validate a multiomics-based model to predict OLNM in patients with early-stage tongue cancer. Methods The data of 125 patients diagnosed with early-stage tongue cancer (cT1-2N0M0) who underwent primary surgical treatment and elective neck dissection were retrospectively analyzed. A total of 100 patients were randomly assigned to the training set and 25 to the test set. The preoperative contrast-enhanced computed tomography (CT) and clinical data on these patients were collected. Radiomics features were extracted from the primary tumor as the region of interest (ROI) on CT images, and correlation analysis and the least absolute shrinkage and selection operator (LASSO) method were used to identify the most relevant features. A support vector machine (SVM) classifier was constructed and compared with other machine learning algorithms. With the same method, a clinical model was built and the peri-tumoral and intra-tumoral images were selected as the input for the deep learning model. The stacking ensemble technique was used to combine the multiple models. The predictive performance of the integrated model was evaluated for accuracy, sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC-ROC), and compared with expert assessment. Internal validation was performed using a stratified five-fold cross-validation approach. Results Of the 125 patients, 41 (32.8%) showed OLNM on postoperative pathological examination. The integrated model achieved higher predictive performance compared with the individual models, with an accuracy of 84%, a sensitivity of 100%, a specificity of 76.5%, and an AUC-ROC of 0.949 (95% CI [0.870–1.000]). In addition, the performance of the integrated model surpassed that of younger doctors and was comparable to the evaluation of experienced doctors. Conclusions The multiomics-based model can accurately predict OLNM in patients with early-stage tongue cancer, and may serve as a valuable decision-making tool to determine the appropriate treatment and avoid unnecessary neck surgery in patients without OLNM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
15秒前
22秒前
CodeCraft应助简宁采纳,获得10
50秒前
1分钟前
简宁发布了新的文献求助10
1分钟前
简宁完成签到,获得积分10
1分钟前
Akim应助yf采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
TEMPO完成签到,获得积分10
3分钟前
3分钟前
TEMPO发布了新的文献求助10
3分钟前
3分钟前
3分钟前
yf发布了新的文献求助10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
mrjohn完成签到,获得积分0
4分钟前
LIFE2020完成签到 ,获得积分10
4分钟前
4分钟前
Arain456发布了新的文献求助10
4分钟前
4分钟前
HC发布了新的文献求助10
4分钟前
hu完成签到 ,获得积分10
4分钟前
科研通AI6应助HC采纳,获得10
4分钟前
4分钟前
HC完成签到,获得积分10
4分钟前
汉堡包应助hu采纳,获得10
5分钟前
fuxiu完成签到,获得积分10
5分钟前
佳佳发布了新的文献求助10
5分钟前
隐形曼青应助佳佳采纳,获得10
5分钟前
从来都不会放弃zr完成签到,获得积分0
5分钟前
6分钟前
佳佳发布了新的文献求助10
6分钟前
lalala完成签到,获得积分10
6分钟前
6分钟前
Akim应助佳佳采纳,获得10
6分钟前
gaogaogao完成签到,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651010
求助须知:如何正确求助?哪些是违规求助? 4782702
关于积分的说明 15052953
捐赠科研通 4809790
什么是DOI,文献DOI怎么找? 2572590
邀请新用户注册赠送积分活动 1528597
关于科研通互助平台的介绍 1487601