Predicting microbial growth conditions from amino acid composition

作文(语言) 氨基酸 化学 食品科学 生物化学 艺术 文学类
作者
Tyler P. Barnum,Alexander Crits‐Christoph,Michael Molla,Paul Carini,Henry H. Lee,Nili Ostrov
标识
DOI:10.1101/2024.03.22.586313
摘要

The ability to grow a microbe in the laboratory enables reproducible study and engineering of its genetics. Unfortunately, the majority of microbes in the tree of life remain uncultivated because of the effort required to identify culturing conditions. Predictions of viable growth conditions to guide experimental testing would be highly desirable. While carbon and energy sources can be computationally predicted with annotated genes, it is harder to predict other requirements for growth such as oxygen, temperature, salinity, and pH. Here, we developed genome-based computational models capable of predicting oxygen tolerance (92% balanced accuracy), optimum temperature (R2=0.73), salinity (R2=0.81) and pH (R2=0.48) for novel taxonomic microbial families without requiring functional gene annotations. Using growth conditions and genome sequences of 15,596 bacteria and archaea, we found that amino acid frequencies are predictive of growth requirements. As little as two amino acids can predict oxygen tolerance with 88% balanced accuracy. Using cellular localization of proteins to compute amino acid frequencies improved prediction of pH (R2 increase of 0.36). Because these models do not rely on the presence or absence of specific genes, they can be applied to incomplete genomes, requiring as little as 10% completeness. We applied our models to predict growth requirements for all 85,205 species of sequenced bacteria and archaea and found that uncultivated species are enriched in thermophiles, anaerobes, and acidophiles. Finally, we applied our models to 3,349 environmental samples with metagenome-assembled genomes and showed that individual microbes within a community have differing growth requirements. This work guides identification of growth constraints for laboratory cultivation of diverse microbes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yang_effect发布了新的文献求助10
1秒前
1秒前
慕青应助Jeremy采纳,获得10
1秒前
1秒前
chenyx发布了新的文献求助10
1秒前
万能图书馆应助大力蚂蚁采纳,获得10
1秒前
Sophist完成签到,获得积分10
2秒前
清颜发布了新的文献求助10
2秒前
自由灰狼发布了新的文献求助10
2秒前
SYLH应助诚心代芙采纳,获得10
2秒前
义气如萱完成签到 ,获得积分10
3秒前
3秒前
3秒前
好运藏在善良里完成签到,获得积分10
3秒前
3秒前
从容的乐松完成签到,获得积分10
3秒前
充电宝应助Landau采纳,获得10
4秒前
4秒前
4秒前
5秒前
酷波er应助VDC采纳,获得200
5秒前
5秒前
han发布了新的文献求助10
6秒前
gh完成签到,获得积分10
6秒前
知来者完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
7秒前
大气问枫发布了新的文献求助10
7秒前
jin发布了新的文献求助10
7秒前
biubiufan完成签到,获得积分10
7秒前
情怀应助Cmdbjzw采纳,获得10
7秒前
yinying完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
Landau完成签到,获得积分10
9秒前
体贴问玉完成签到,获得积分20
9秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809509
求助须知:如何正确求助?哪些是违规求助? 3354044
关于积分的说明 10368403
捐赠科研通 3070309
什么是DOI,文献DOI怎么找? 1686150
邀请新用户注册赠送积分活动 810855
科研通“疑难数据库(出版商)”最低求助积分说明 766384