Diagnosis of Interproximal Caries Lesions in Bitewing Radiographs Using a Deep Convolutional Neural Network-Based Software

接收机工作特性 诊断试验中的似然比 射线照相术 医学 卷积神经网络 预测值 牙科 人工智能 可靠性(半导体) 人工神经网络 置信区间 口腔正畸科 放射科 计算机科学 内科学 功率(物理) 物理 量子力学
作者
Ángel García-Cañas,M Bonfanti-Gris,Sergio Paraíso-Medina,Francisco Martínez‐Rus,Guillermo Pradíes
出处
期刊:Caries Research [S. Karger AG]
卷期号:56 (5-6): 503-511 被引量:19
标识
DOI:10.1159/000527491
摘要

The aim of this study was to evaluate the diagnostic reliability of a web-based artificial intelligence program for the detection of interproximal caries in bitewing radiographs. Three hundred bitewing radiographs of patients were subjected to the evaluation of a convolutional neural network. First, the images were visually evaluated by a previously trained and calibrated operator with radiodiagnosis experience. Then, ground truth was established and was clinically validated. For enamel caries, clinical assessment included a combination of clinical-visual and radiography evaluations. For dentin caries, clinical validation was performed by instrumentally accessing the cavity. Second, the images were uploaded and analyzed by the web-based software. Four different models were established to analyze its evaluations according to the confidence threshold (0–100%) offered by the program: model 1 (values >0% were considered positive and values of 0% were considered negative), model 2 (values ≥25% were considered positive and values <25% were considered negative), model 3 (values ≥50% were considered positive and values <50% were considered negative), and model 4 (values ≥75% were considered positive and values <75% were considered negative). The accuracy rate (A), sensitivity (S), specificity (E), positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (PLR), negative likelihood ratio (NLR), and areas under receiver operating characteristic curves (AUC) were calculated for the four models of agreement with the software. Models showed the following results respectively: A = 70.8%, 82%, 85.6%, 86.1%; S = 87%, 69.8%, 57%, 41.6%; E = 66.3%, 85.4%, 93.7%, 98.5%; PPV = 42%, 57.2%, 71.6%, 88.6%; NPV = 94.8%, 91%, 88.6%, 85.8%; PLR = 2.58, 4.78, 9.05, 27.73; NLR = 0.2, 0.35, 0.46, 0.59; AUC = 0.767, 0.777, 0.753, 0.701. Findings in the present study suggest that the artificial intelligence web-based software provides a good diagnostic reliability on the detection of dental caries. Our study highlighted model 2 for showing the best results to differentiate between healthy teeth and decayed teeth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Binbin完成签到 ,获得积分10
5秒前
感性的道之完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
淡然以柳完成签到 ,获得积分10
12秒前
Zhjie126完成签到,获得积分10
13秒前
青青草完成签到,获得积分10
14秒前
笑林完成签到 ,获得积分10
18秒前
大猫不吃鱼完成签到,获得积分10
20秒前
美海与鱼完成签到,获得积分10
23秒前
8D完成签到,获得积分10
24秒前
hwa完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
27秒前
碧蓝可仁完成签到 ,获得积分10
29秒前
darcy完成签到,获得积分10
31秒前
32秒前
旅人完成签到 ,获得积分10
34秒前
Shuhe_Gong完成签到 ,获得积分10
35秒前
优雅的千雁完成签到,获得积分10
37秒前
大好人完成签到 ,获得积分10
37秒前
kean1943完成签到,获得积分10
38秒前
qq完成签到 ,获得积分10
42秒前
知性的夏槐完成签到 ,获得积分10
42秒前
humble完成签到 ,获得积分10
42秒前
42秒前
qiandi完成签到,获得积分10
44秒前
满意的念柏完成签到,获得积分10
44秒前
耍酷鼠标完成签到 ,获得积分0
45秒前
hadern完成签到,获得积分10
45秒前
mayberichard完成签到,获得积分10
45秒前
量子星尘发布了新的文献求助150
46秒前
强壮的美女完成签到,获得积分10
46秒前
闪闪小小完成签到 ,获得积分10
47秒前
赵李锋完成签到,获得积分10
48秒前
TheGreat完成签到,获得积分10
51秒前
nusiew完成签到,获得积分10
52秒前
米博士完成签到,获得积分10
55秒前
SDNUDRUG完成签到,获得积分10
1分钟前
sakuraroad完成签到 ,获得积分10
1分钟前
芙瑞完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助50
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5128517
求助须知:如何正确求助?哪些是违规求助? 4331182
关于积分的说明 13494253
捐赠科研通 4167179
什么是DOI,文献DOI怎么找? 2284379
邀请新用户注册赠送积分活动 1285380
关于科研通互助平台的介绍 1225982