An Intercompany Perspective on Practical Experiences of Predicting, Optimizing and Analyzing High Concentration Biologic Therapeutic Formulations

溶解度 生化工程 粘度 赋形剂 理论(学习稳定性) 计算机科学 化学 工艺工程 材料科学 色谱法 工程类 有机化学 机器学习 复合材料
作者
Preeti G Desai,Patrick Garidel,Francisca Owusu Gbormittah,Douglas E. Kamen,Brittney J. Mills,Chakravarthy Narasimhan,Shubhadra N. Singh,Elaine S. E. Stokes,Erika R Walsh
出处
期刊:Journal of Pharmaceutical Sciences [Elsevier BV]
卷期号:112 (2): 359-369 被引量:3
标识
DOI:10.1016/j.xphs.2022.11.020
摘要

Developing high-dose biologic drugs for subcutaneous injection often requires high-concentration formulations and optimizing viscosity, solubility, and stability while overcoming analytical, manufacturing, and administration challenges. To understand industry approaches for developing high-concentration formulations, the Formulation Workstream of the BioPhorum Development Group, an industry-wide consortium, conducted an inter-company collaborative exercise which included several surveys. This collaboration provided an industry perspective, experience, and insight into the practicalities for developing high-concentration biologics. To understand solubility and viscosity, companies desire predictive tools, but experience indicates that these are not reliable and experimental strategies are best. Similarly, most companies prefer accelerated and stress stability studies to in-silico or biophysical-based prediction methods to assess aggregation. In addition, optimization of primary container-closure and devices are pursued to mitigate challenges associated with high viscosity of the formulation. Formulation strategies including excipient selection and application of studies at low concentration to high-concentration formulations are reported. Finally, analytical approaches to high concentration formulations are presented. The survey suggests that although prediction of viscosity, solubility, and long-term stability is desirable, the outcome can be inconsistent and molecule dependent. Significant experimental studies are required to confirm robust product definition as modeling at low protein concentrations will not necessarily extrapolate to high concentration formulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魏佳旭完成签到,获得积分10
1秒前
1秒前
2秒前
简单刺猬发布了新的文献求助10
2秒前
2秒前
科研通AI5应助阿言采纳,获得30
2秒前
小粽子应助沉醉采纳,获得10
2秒前
jiafang完成签到,获得积分10
3秒前
3秒前
小二郎应助研友_qZAe6Z采纳,获得10
3秒前
3秒前
zier完成签到 ,获得积分10
4秒前
今后应助Aspirin采纳,获得10
4秒前
4秒前
4秒前
sxm1004完成签到,获得积分10
5秒前
泡泡发布了新的文献求助10
5秒前
Jasper应助灵泽采纳,获得10
6秒前
6秒前
7秒前
7秒前
圆彰七大发布了新的文献求助10
7秒前
大个应助红小豆采纳,获得10
8秒前
Jabowoo发布了新的文献求助10
8秒前
8秒前
科研小陈发布了新的文献求助10
8秒前
酷波er应助王小西采纳,获得10
8秒前
在水一方应助Lemon采纳,获得10
9秒前
SciGPT应助宁宁宁采纳,获得10
9秒前
Oliver发布了新的文献求助10
9秒前
Aspirin完成签到,获得积分10
9秒前
积极的罡发布了新的文献求助10
9秒前
HopeStar发布了新的文献求助10
9秒前
9秒前
善学以致用应助孤勇者采纳,获得30
10秒前
圈圈儿完成签到,获得积分20
10秒前
包元霜发布了新的文献求助10
10秒前
赘婿应助呼啦啦采纳,获得10
11秒前
23完成签到,获得积分10
11秒前
Zn0103完成签到 ,获得积分10
12秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841351
求助须知:如何正确求助?哪些是违规求助? 3383439
关于积分的说明 10529854
捐赠科研通 3103519
什么是DOI,文献DOI怎么找? 1709323
邀请新用户注册赠送积分活动 823096
科研通“疑难数据库(出版商)”最低求助积分说明 773813