Rapid Determination of Polysaccharides in Cistanche Tubulosa Using Near-Infrared Spectroscopy Combined with Machine Learning

均方误差 校准 数学 人工智能 偏最小二乘回归 支持向量机 决定系数 主成分分析 主成分回归 模式识别(心理学) 统计 计算机科学
作者
Yu Wang,Zhan-Ping Tian,Jiajia Xie,Ying Luo,Jun Yao,Jing Shen
出处
期刊:Journal of AOAC International [Oxford University Press]
卷期号:106 (4): 1118-1125 被引量:5
标识
DOI:10.1093/jaoacint/qsac144
摘要

Cistanche tubulosa, as a homology of medicine and food, not only has a unique medicinal value but also is widely used in healthcare products. Polysaccharide is one of its important quality indicators.In this study, an analytical model based on near-infrared (NIR) spectroscopy combined with machine learning was established to predict the polysaccharide content of C. tubulosa.The polysaccharide content in the samples determined by the phenol-sulfuric acid method was used as a reference value, and machine learning was applied to relate the spectral information to the reference value. Dividing the samples into a calibration set and a prediction set using the Kennard-Stone algorithm. The model was optimized by various preprocessing methods, including Savitzky-Golay (SG), standard normal variate (SNV), multiple scattering correction (MSC), first-order derivative (FD), second-order derivative (SD), and combinations of them. Variable selection was performed through the successive projections algorithm (SPA) and stability competitive adaptive reweighted sampling (sCARS). Four machine learning models were used to build quantitative models, including the random forest (RF), partial least-squares (PLS), principal component regression (PCR), and support vector machine (SVM). The evaluation indexes of the model were the coefficient of determination (R2), root-mean-square error (RMSE), and residual prediction deviation (RPD).RF performs best among the four machine learning models. R2c (calibration set coefficient of determination) and RMSEC (root mean square error of the calibration set), %, were 0.9763. and 0.3527 for calibration, respectively. R2p (prediction set coefficient of determination), RMSEP (root mean square error of the prediction set), %, and RPD were 0.9230, 0.5130, and 3.33 for prediction, respectively.The results indicate that NIR combined with the RF is an effective method applied to the quality evaluation of the polysaccharides of C. tubulosa.Four quantitative models were developed to predict the polysaccharide content in C. tubulosa, and good results were obtained. The characteristic variables were basically determined by the sCARS algorithm, and the corresponding characteristic groups were analyzed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
小波完成签到,获得积分10
3秒前
sunhhhh完成签到 ,获得积分10
5秒前
田様应助cccc采纳,获得10
6秒前
7秒前
shihui发布了新的文献求助10
8秒前
10秒前
量子星尘发布了新的文献求助10
12秒前
萝卜干发布了新的文献求助10
13秒前
LKT发布了新的文献求助10
15秒前
直率的乐萱完成签到 ,获得积分10
19秒前
王爱芳完成签到 ,获得积分10
24秒前
脑洞疼应助LKT采纳,获得10
27秒前
28秒前
30秒前
离子电池完成签到,获得积分10
30秒前
我是老大应助拾捌采纳,获得10
31秒前
辛勤安梦完成签到,获得积分10
32秒前
32秒前
量子星尘发布了新的文献求助10
32秒前
qinghe完成签到,获得积分20
32秒前
埃特纳氏完成签到 ,获得积分10
33秒前
cccc发布了新的文献求助10
34秒前
领导范儿应助LoganLee采纳,获得10
34秒前
Splaink完成签到 ,获得积分10
37秒前
bingbing发布了新的文献求助10
38秒前
最棒哒完成签到 ,获得积分10
39秒前
qinghe发布了新的文献求助30
40秒前
jiao完成签到,获得积分10
40秒前
41秒前
LoganLee完成签到,获得积分10
42秒前
充电宝应助bingbing采纳,获得10
43秒前
英俊的铭应助嘟嘟采纳,获得10
46秒前
义气的采文完成签到,获得积分10
46秒前
研都不研了完成签到 ,获得积分10
48秒前
lyx发布了新的文献求助10
48秒前
49秒前
something完成签到 ,获得积分10
50秒前
51秒前
鑫鑫完成签到,获得积分10
52秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4217424
求助须知:如何正确求助?哪些是违规求助? 3751490
关于积分的说明 11796171
捐赠科研通 3416241
什么是DOI,文献DOI怎么找? 1874990
邀请新用户注册赠送积分活动 928798
科研通“疑难数据库(出版商)”最低求助积分说明 837836