Rapid Determination of Polysaccharides in Cistanche Tubulosa Using Near-Infrared Spectroscopy Combined with Machine Learning

均方误差 校准 数学 人工智能 偏最小二乘回归 支持向量机 决定系数 主成分分析 主成分回归 模式识别(心理学) 统计 计算机科学
作者
Yu Wang,Zhan-Ping Tian,Jiajia Xie,Ying Luo,Jun Yao,Jing Shen
出处
期刊:Journal of AOAC International [Oxford University Press]
卷期号:106 (4): 1118-1125 被引量:2
标识
DOI:10.1093/jaoacint/qsac144
摘要

Cistanche tubulosa, as a homology of medicine and food, not only has a unique medicinal value but also is widely used in healthcare products. Polysaccharide is one of its important quality indicators.In this study, an analytical model based on near-infrared (NIR) spectroscopy combined with machine learning was established to predict the polysaccharide content of C. tubulosa.The polysaccharide content in the samples determined by the phenol-sulfuric acid method was used as a reference value, and machine learning was applied to relate the spectral information to the reference value. Dividing the samples into a calibration set and a prediction set using the Kennard-Stone algorithm. The model was optimized by various preprocessing methods, including Savitzky-Golay (SG), standard normal variate (SNV), multiple scattering correction (MSC), first-order derivative (FD), second-order derivative (SD), and combinations of them. Variable selection was performed through the successive projections algorithm (SPA) and stability competitive adaptive reweighted sampling (sCARS). Four machine learning models were used to build quantitative models, including the random forest (RF), partial least-squares (PLS), principal component regression (PCR), and support vector machine (SVM). The evaluation indexes of the model were the coefficient of determination (R2), root-mean-square error (RMSE), and residual prediction deviation (RPD).RF performs best among the four machine learning models. R2c (calibration set coefficient of determination) and RMSEC (root mean square error of the calibration set), %, were 0.9763. and 0.3527 for calibration, respectively. R2p (prediction set coefficient of determination), RMSEP (root mean square error of the prediction set), %, and RPD were 0.9230, 0.5130, and 3.33 for prediction, respectively.The results indicate that NIR combined with the RF is an effective method applied to the quality evaluation of the polysaccharides of C. tubulosa.Four quantitative models were developed to predict the polysaccharide content in C. tubulosa, and good results were obtained. The characteristic variables were basically determined by the sCARS algorithm, and the corresponding characteristic groups were analyzed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术通zzz发布了新的文献求助10
1秒前
正直的松鼠完成签到 ,获得积分10
1秒前
柴柴子完成签到 ,获得积分10
3秒前
眼睛大冬日完成签到 ,获得积分10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
是真灵还是机灵完成签到 ,获得积分10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
脆鹅应助科研通管家采纳,获得10
5秒前
高山流水应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得30
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
5秒前
7秒前
欢呼的凌兰完成签到,获得积分10
8秒前
9秒前
ll完成签到 ,获得积分20
9秒前
peekaboo完成签到,获得积分10
10秒前
荀万声完成签到,获得积分10
11秒前
huhuhu发布了新的文献求助10
11秒前
酷波er应助chrysan采纳,获得10
12秒前
13秒前
左一酱完成签到 ,获得积分10
14秒前
haifang发布了新的文献求助10
14秒前
考啥都上岸完成签到,获得积分10
14秒前
Wsq完成签到,获得积分10
16秒前
踏雪飞鸿发布了新的文献求助10
16秒前
科研通AI5应助稀饭采纳,获得10
17秒前
打打应助稀饭采纳,获得10
17秒前
我是老大应助稀饭采纳,获得10
17秒前
xzy998应助稀饭采纳,获得10
17秒前
科研通AI5应助稀饭采纳,获得10
17秒前
圈圈完成签到 ,获得积分10
18秒前
huhuhu完成签到,获得积分10
18秒前
天天快乐应助潇潇雨歇采纳,获得10
19秒前
一二完成签到,获得积分10
21秒前
华仔应助Wsq采纳,获得10
22秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323458
关于积分的说明 10214533
捐赠科研通 3038671
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758315