亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Rapid Determination of Polysaccharides in Cistanche Tubulosa Using Near-Infrared Spectroscopy Combined with Machine Learning

均方误差 校准 数学 人工智能 偏最小二乘回归 支持向量机 决定系数 主成分分析 主成分回归 模式识别(心理学) 统计 计算机科学
作者
Yu Wang,Zhan-Ping Tian,Jiajia Xie,Ying Luo,Jun Yao,Jing Shen
出处
期刊:Journal of AOAC International [Oxford University Press]
卷期号:106 (4): 1118-1125 被引量:6
标识
DOI:10.1093/jaoacint/qsac144
摘要

Cistanche tubulosa, as a homology of medicine and food, not only has a unique medicinal value but also is widely used in healthcare products. Polysaccharide is one of its important quality indicators.In this study, an analytical model based on near-infrared (NIR) spectroscopy combined with machine learning was established to predict the polysaccharide content of C. tubulosa.The polysaccharide content in the samples determined by the phenol-sulfuric acid method was used as a reference value, and machine learning was applied to relate the spectral information to the reference value. Dividing the samples into a calibration set and a prediction set using the Kennard-Stone algorithm. The model was optimized by various preprocessing methods, including Savitzky-Golay (SG), standard normal variate (SNV), multiple scattering correction (MSC), first-order derivative (FD), second-order derivative (SD), and combinations of them. Variable selection was performed through the successive projections algorithm (SPA) and stability competitive adaptive reweighted sampling (sCARS). Four machine learning models were used to build quantitative models, including the random forest (RF), partial least-squares (PLS), principal component regression (PCR), and support vector machine (SVM). The evaluation indexes of the model were the coefficient of determination (R2), root-mean-square error (RMSE), and residual prediction deviation (RPD).RF performs best among the four machine learning models. R2c (calibration set coefficient of determination) and RMSEC (root mean square error of the calibration set), %, were 0.9763. and 0.3527 for calibration, respectively. R2p (prediction set coefficient of determination), RMSEP (root mean square error of the prediction set), %, and RPD were 0.9230, 0.5130, and 3.33 for prediction, respectively.The results indicate that NIR combined with the RF is an effective method applied to the quality evaluation of the polysaccharides of C. tubulosa.Four quantitative models were developed to predict the polysaccharide content in C. tubulosa, and good results were obtained. The characteristic variables were basically determined by the sCARS algorithm, and the corresponding characteristic groups were analyzed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重若山完成签到,获得积分10
1秒前
诚心完成签到,获得积分10
4秒前
7秒前
10秒前
10秒前
fancycow发布了新的文献求助10
14秒前
吱吱发布了新的文献求助10
14秒前
orixero应助科研通管家采纳,获得10
15秒前
唐泽雪穗应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
16秒前
24秒前
fancycow完成签到,获得积分10
25秒前
朴实云应完成签到,获得积分10
28秒前
28秒前
Pierce发布了新的文献求助10
31秒前
稳重若山发布了新的文献求助10
33秒前
量子星尘发布了新的文献求助10
35秒前
CodeCraft应助巴巴bow采纳,获得10
37秒前
Pierce完成签到,获得积分10
38秒前
FairyLeaf完成签到 ,获得积分10
38秒前
田様应助稳重若山采纳,获得10
39秒前
Betty完成签到,获得积分10
41秒前
41秒前
段汶发布了新的文献求助10
45秒前
所所应助Betty采纳,获得10
46秒前
佩佩完成签到 ,获得积分10
51秒前
52秒前
王酸菜完成签到 ,获得积分10
54秒前
卡皮巴拉发布了新的文献求助10
58秒前
段汶发布了新的文献求助10
59秒前
1分钟前
xuxu完成签到 ,获得积分10
1分钟前
ding应助段汶采纳,获得10
1分钟前
巴巴bow完成签到,获得积分10
1分钟前
北有云烟完成签到 ,获得积分10
1分钟前
1分钟前
卡皮巴拉完成签到,获得积分10
1分钟前
吱吱发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5053019
求助须知:如何正确求助?哪些是违规求助? 4279925
关于积分的说明 13340168
捐赠科研通 4095527
什么是DOI,文献DOI怎么找? 2241627
邀请新用户注册赠送积分活动 1247927
关于科研通互助平台的介绍 1177352