Correlated RNN Framework to Quickly Generate Molecules with Desired Properties for Energetic Materials in the Low Data Regime

起爆 化学 循环神经网络 计算机科学 爆炸物 化学空间 集合(抽象数据类型) 人工智能 深度学习 数据集 人工神经网络 化学 药物发现 生物化学 有机化学 程序设计语言
作者
Chuan Li,Chenghui Wang,Ming Sun,Yan Zeng,Yuan Yuan,Qiaolin Gou,Guangchuan Wang,Yanzhi Guo,Xuemei Pu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (20): 4873-4887 被引量:16
标识
DOI:10.1021/acs.jcim.2c00997
摘要

Motivated by the challenging of deep learning on the low data regime and the urgent demand for intelligent design on highly energetic materials, we explore a correlated deep learning framework, which consists of three recurrent neural networks (RNNs) correlated by the transfer learning strategy, to efficiently generate new energetic molecules with a high detonation velocity in the case of very limited data available. To avoid the dependence on the external big data set, data augmentation by fragment shuffling of 303 energetic compounds is utilized to produce 500,000 molecules to pretrain RNN, through which the model can learn sufficient structure knowledge. Then the pretrained RNN is fine-tuned by focusing on the 303 energetic compounds to generate 7153 molecules similar to the energetic compounds. In order to more reliably screen the molecules with a high detonation velocity, the SMILE enumeration augmentation coupled with the pretrained knowledge is utilized to build an RNN-based prediction model, through which R2 is boosted from 0.4446 to 0.9572. The comparable performance with the transfer learning strategy based on an existing big database (ChEMBL) to produce the energetic molecules and drug-like ones further supports the effectiveness and generality of our strategy in the low data regime. High-precision quantum mechanics calculations further confirm that 35 new molecules present a higher detonation velocity and lower synthetic accessibility than the classic explosive RDX, along with good thermal stability. In particular, three new molecules are comparable to caged CL-20 in the detonation velocity. All the source codes and the data set are freely available at https://github.com/wangchenghuidream/RNNMGM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小何完成签到 ,获得积分10
刚刚
1秒前
Eton完成签到,获得积分10
2秒前
清客完成签到 ,获得积分10
2秒前
111发布了新的文献求助10
2秒前
烟花应助李李采纳,获得10
2秒前
lyy完成签到 ,获得积分10
3秒前
卡牌大师完成签到,获得积分10
3秒前
yshog发布了新的文献求助10
4秒前
1z完成签到,获得积分10
4秒前
cldg发布了新的文献求助10
5秒前
英姑应助gemini0615采纳,获得10
5秒前
yu完成签到,获得积分10
6秒前
7秒前
9秒前
msk完成签到 ,获得积分10
9秒前
11秒前
珥多完成签到 ,获得积分10
11秒前
上官若男应助gemini0615采纳,获得10
12秒前
Tzzl0226完成签到,获得积分10
12秒前
独特的沛凝完成签到,获得积分10
13秒前
可爱的函函应助yshog采纳,获得10
14秒前
14秒前
二二完成签到 ,获得积分10
15秒前
15秒前
尹尹尹发布了新的文献求助10
15秒前
ys6完成签到,获得积分10
15秒前
酷波er应助fancyking采纳,获得10
15秒前
田様应助独家双层汉堡采纳,获得10
16秒前
科研通AI5应助Andorchid采纳,获得10
17秒前
sunyt完成签到,获得积分10
19秒前
hyf完成签到,获得积分10
19秒前
gemini0615发布了新的文献求助10
19秒前
溢出的爱像雨完成签到,获得积分20
21秒前
文献啊文献完成签到,获得积分10
22秒前
22秒前
23秒前
curtainai完成签到,获得积分10
24秒前
24秒前
张先生完成签到 ,获得积分10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781113
求助须知:如何正确求助?哪些是违规求助? 3326545
关于积分的说明 10227650
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669552
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734