High-Thermal-Conductivity Radiative Cooling Films for Enhanced Passive Daytime Cooling

白天 材料科学 辐射冷却 热导率 热的 被动冷却 光电子学 工程物理 核工程 复合材料 热力学 大气科学 物理 工程类 地质学
作者
Shijin Nie,Lizhan Bai,Guiping Lin,Yuandong Guo,Yuan Kang,Yunfei Zhang,Hongxiang Lan,Shuai Su,Guiguang Qi,Mengyang Wang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.5c14348
摘要

Passive daytime radiative cooling (PDRC) technology relies on reflecting solar visible light that carries high energy and radiating surface heat to a low-temperature cold background in the long-wave infrared band, thereby achieving clean energy-saving cooling. However, the irreversibility of high flux heat flow is often present in practical applications, resulting in the inability to maximize the cooling effect produced by radiative cooling. In this study, we developed an integrated radiative cooling (RC) film with high thermal conductivity for efficient cooling (DPHA film) by strategically constructing internal thermal channels within the RC interface. Compared to the indoor chamber temperature, the DPHA film, with its superior optical properties (reflectivity ∼ 0.96, emissivity ∼ 0.98), yielded a maximum temperature difference of 17.5 °C and an average difference of 13.2 °C under solar intensity of 977 W m-2. The cooling effect was 8.5 °C lower than commercially available highly reflective aluminum paint and 5.2 °C lower than a comparable cooler. Thermal conductivity tests showed that the DPHA film possessed high out-plane thermal conductivity (0.755 W m-1 K-1), which facilitated the radiative dissipation of surface heat via forming a thermal gradient with the environment. After 30 days of continuous strong UV irradiation experiments, the obtained film showed favorable optical properties and aging resistance. DPHA film as a new radiative cooler effectively improves the overall performance of the cooling, with good potential and scalability for outdoor applications. This provides a new way to develop radiative cooling materials that are efficient, cost-effective and easy to mass produce.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DungHoang完成签到,获得积分10
1秒前
Sylvia_J完成签到 ,获得积分10
1秒前
无情向薇完成签到 ,获得积分10
1秒前
1秒前
1秒前
南冥完成签到 ,获得积分10
2秒前
烧烤发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
6秒前
6秒前
科研通AI6应助陶醉的诗双采纳,获得30
7秒前
7秒前
漠mo完成签到 ,获得积分10
8秒前
8秒前
机灵凌雪发布了新的文献求助10
8秒前
潜水的猪发布了新的文献求助30
9秒前
关我屁事发布了新的文献求助10
9秒前
pcykyt发布了新的文献求助10
9秒前
共享精神应助冷静的依瑶采纳,获得10
11秒前
朴树朋友完成签到,获得积分10
12秒前
荔枝完成签到 ,获得积分10
13秒前
浮游应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
852应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
倒霉的芒果完成签到 ,获得积分10
14秒前
阿玖应助科研通管家采纳,获得10
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
HaCat应助科研通管家采纳,获得10
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
LiYong完成签到,获得积分10
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
沧海应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290003
求助须知:如何正确求助?哪些是违规求助? 4441401
关于积分的说明 13827489
捐赠科研通 4323954
什么是DOI,文献DOI怎么找? 2373439
邀请新用户注册赠送积分活动 1368835
关于科研通互助平台的介绍 1332770