清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Exploiting EHRs using natural language processing to enable research in emergency medicine: a protocol for a study on hospitalization rates

协议(科学) 计算机科学 医疗急救 医学 替代医学 病理
作者
Vicky Rubini,Franco Aprà,Giulia Irene Ghilardi,Jacek Górka,Katarina Hricova,Isaac John,Zora Lazúrová,Peter Mitro,Giovanni Nattino,George Notas,Chiara Pandolfini,Giovanni Porta,Gregor Prosen,Pankaj Sharma,Matej Strnad,Guido Bertolini
标识
DOI:10.3389/femer.2025.1558444
摘要

Increasing demands on emergency departments (EDs) call for optimized decision-making processes to improve patient outcomes and resource allocation. Overcrowding is a significant issue, and the propensity of EDs to hospitalize patients is a key contributing factor to limiting in-patient bed availability, with inappropriate decisions negatively impacting healthcare quality and costs. In this setting research in emergency medicine to improve these difficulties is challenging. The main obstacles are the large volume of cases handled, the paucity of staff availability, and the resulting lack of time to dedicate to data entry. Furthermore, the electronic health record (EHR) systems currently used in EDs are not optimized for collection of data for research. Even retrospective data analyses cannot be performed due to the lack of robust data. Moreover, the EHR contains not only structured data but also abundant information in a free-text format which is challenging to use for research purposes. This protocol describes a study, the Use Case 1 study, which is part of the more general Horizon Europe eCREAM (enabling Clinical Research in Emergency and Acute-care Medicine) project. The study will test the reliability of an advanced natural language processing model set up in eCREAM to exploit EHRs by extracting robust, structured data to enable research in EDs. Specifically, the study will test the validity of the data extracted from the EHRs by addressing the issue of hospitalization rate. We will develop a predictive model to assess emergency department hospitalization rates, thereby enabling standardized comparisons across centers, ultimately leading to improved decision-making and reduced unnecessary hospital admissions. Retrospective patient data from 2021 to 2023 from 30 centers across Europe will be analyzed, and multivariable models will be employed to predict hospitalization and adjust comparisons between centers. The results are expected to improve decision-making in these departments. More generally, should the data extraction system prove valid, our results would serve as a practical demonstration that, despite the abundance of free-text data, EHRs can be exploited to conduct research in the emergency medicine field. Clinical trial registration Clinicaltrials.gov , identifier: NCT06354764.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
菜菜博士发布了新的文献求助10
10秒前
菜菜博士完成签到,获得积分10
16秒前
38秒前
胡小壳发布了新的文献求助10
41秒前
蝎子莱莱xth完成签到,获得积分10
48秒前
氢锂钠钾铷铯钫完成签到,获得积分10
55秒前
Square完成签到,获得积分10
58秒前
1分钟前
lling完成签到 ,获得积分10
1分钟前
开心每一天完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
迷人的沛山完成签到 ,获得积分10
2分钟前
生生完成签到 ,获得积分10
2分钟前
Vlory完成签到,获得积分10
2分钟前
共享精神应助Gary采纳,获得10
3分钟前
Vlory发布了新的文献求助10
3分钟前
3分钟前
doublenine18发布了新的文献求助10
3分钟前
naki完成签到,获得积分10
3分钟前
3分钟前
Hello应助doublenine18采纳,获得30
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
Gary发布了新的文献求助10
5分钟前
mkeale应助科研通管家采纳,获得20
5分钟前
A水暖五金批发张哥完成签到,获得积分10
5分钟前
简单的冬瓜完成签到,获得积分10
5分钟前
天天快乐应助Gary采纳,获得10
6分钟前
LINDENG2004完成签到 ,获得积分10
6分钟前
mkeale应助科研通管家采纳,获得20
7分钟前
胖小羊完成签到 ,获得积分10
7分钟前
7分钟前
留白完成签到 ,获得积分10
7分钟前
Gary发布了新的文献求助10
7分钟前
7分钟前
lanxinge完成签到 ,获得积分10
7分钟前
Gary完成签到,获得积分10
7分钟前
阿阿阿阿阿金完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639795
求助须知:如何正确求助?哪些是违规求助? 4750532
关于积分的说明 15007352
捐赠科研通 4798008
什么是DOI,文献DOI怎么找? 2564082
邀请新用户注册赠送积分活动 1522938
关于科研通互助平台的介绍 1482609