清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

AI-based large-scale screening of gastric cancer from noncontrast CT imaging

癌症 医学 比例(比率) 放射科 内科学 地图学 地理
作者
Zhiyuan Xu,Yingda Xia,Zhilin Zheng,Mengxuan Cao,Guoliang Zheng,Shangqi Chen,Jiancheng Sun,Wujie Chen,Qi Zheng,Siwei Pan,Yanqiang Zhang,Jiahui Chen,Pengfei Yu,Jingli Xu,Jianwei Xu,Zhongwei Qiu,Tiancheng Lin,Boxiang Yun,Jiawen Yao,Wenchao Guo
出处
期刊:Nature Medicine [Nature Portfolio]
被引量:5
标识
DOI:10.1038/s41591-025-03785-6
摘要

Early detection through screening is critical for reducing gastric cancer (GC) mortality. However, in most high-prevalence regions, large-scale screening remains challenging due to limited resources, low compliance and suboptimal detection rate of upper endoscopic screening. Therefore, there is an urgent need for more efficient screening protocols. Noncontrast computed tomography (CT), routinely performed for clinical purposes, presents a promising avenue for large-scale designed or opportunistic screening. Here we developed the Gastric Cancer Risk Assessment Procedure with Artificial Intelligence (GRAPE), leveraging noncontrast CT and deep learning to identify GC. Our study comprised three phases. First, we developed GRAPE using a cohort from 2 centers in China (3,470 GC and 3,250 non-GC cases) and validated its performance on an internal validation set (1,298 cases, area under curve = 0.970) and an independent external cohort from 16 centers (18,160 cases, area under curve = 0.927). Subgroup analysis showed that the detection rate of GRAPE increased with advancing T stage but was independent of tumor location. Next, we compared the interpretations of GRAPE with those of radiologists and assessed its potential in assisting diagnostic interpretation. Reader studies demonstrated that GRAPE significantly outperformed radiologists, improving sensitivity by 21.8% and specificity by 14.0%, particularly in early-stage GC. Finally, we evaluated GRAPE in real-world opportunistic screening using 78,593 consecutive noncontrast CT scans from a comprehensive cancer center and 2 independent regional hospitals. GRAPE identified persons at high risk with GC detection rates of 24.5% and 17.7% in 2 regional hospitals, with 23.2% and 26.8% of detected cases in T1/T2 stage. Additionally, GRAPE detected GC cases that radiologists had initially missed, enabling earlier diagnosis of GC during follow-up for other diseases. In conclusion, GRAPE demonstrates strong potential for large-scale GC screening, offering a feasible and effective approach for early detection. ClinicalTrials.gov registration: NCT06614179 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
John完成签到 ,获得积分10
7秒前
neversay4ever完成签到 ,获得积分10
57秒前
Aimee完成签到,获得积分10
1分钟前
赘婿应助科研通管家采纳,获得10
4分钟前
求文完成签到,获得积分10
4分钟前
白面包不吃鱼完成签到 ,获得积分10
5分钟前
gmc完成签到 ,获得积分10
5分钟前
1111完成签到 ,获得积分10
5分钟前
1437594843完成签到 ,获得积分10
5分钟前
6分钟前
狂野的含烟完成签到 ,获得积分10
6分钟前
6分钟前
醉熏的幼珊完成签到,获得积分10
6分钟前
7分钟前
baozi发布了新的文献求助10
7分钟前
lpp完成签到 ,获得积分10
7分钟前
冰柠檬完成签到 ,获得积分10
8分钟前
舒适的藏花完成签到 ,获得积分10
8分钟前
kisslll完成签到 ,获得积分10
8分钟前
fufufu123完成签到 ,获得积分10
8分钟前
ktw完成签到,获得积分10
9分钟前
科研通AI6应助q792309106采纳,获得10
9分钟前
9分钟前
加菲丰丰应助科研通管家采纳,获得10
10分钟前
常有李完成签到,获得积分10
10分钟前
Bienk发布了新的文献求助10
10分钟前
10分钟前
咯咯咯完成签到 ,获得积分10
10分钟前
10分钟前
q792309106发布了新的文献求助10
11分钟前
vitamin完成签到 ,获得积分10
11分钟前
小蘑菇应助科研通管家采纳,获得10
12分钟前
小山己几完成签到,获得积分10
12分钟前
13分钟前
桦奕兮完成签到 ,获得积分10
13分钟前
小李老博完成签到,获得积分10
13分钟前
Bienk完成签到,获得积分20
14分钟前
哈哈完成签到 ,获得积分10
14分钟前
两个榴莲完成签到,获得积分0
14分钟前
wlscj举报务实的白容求助涉嫌违规
14分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5211391
求助须知:如何正确求助?哪些是违规求助? 4387932
关于积分的说明 13663353
捐赠科研通 4247995
什么是DOI,文献DOI怎么找? 2330679
邀请新用户注册赠送积分活动 1328456
关于科研通互助平台的介绍 1281359