清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

AI-based large-scale screening of gastric cancer from noncontrast CT imaging

癌症 医学 比例(比率) 放射科 内科学 地图学 地理
作者
Zhiyuan Xu,Yingda Xia,Zhilin Zheng,Mengxuan Cao,Guoliang Zheng,Shangqi Chen,Jiancheng Sun,Wujie Chen,Qi Zheng,Siwei Pan,Yanqiang Zhang,Jiahui Chen,Pengfei Yu,Jingli Xu,Jianwei Xu,Zhongwei Qiu,Tiancheng Lin,Boxiang Yun,Jiawen Yao,Wenchao Guo
出处
期刊:Nature Medicine [Nature Portfolio]
被引量:2
标识
DOI:10.1038/s41591-025-03785-6
摘要

Early detection through screening is critical for reducing gastric cancer (GC) mortality. However, in most high-prevalence regions, large-scale screening remains challenging due to limited resources, low compliance and suboptimal detection rate of upper endoscopic screening. Therefore, there is an urgent need for more efficient screening protocols. Noncontrast computed tomography (CT), routinely performed for clinical purposes, presents a promising avenue for large-scale designed or opportunistic screening. Here we developed the Gastric Cancer Risk Assessment Procedure with Artificial Intelligence (GRAPE), leveraging noncontrast CT and deep learning to identify GC. Our study comprised three phases. First, we developed GRAPE using a cohort from 2 centers in China (3,470 GC and 3,250 non-GC cases) and validated its performance on an internal validation set (1,298 cases, area under curve = 0.970) and an independent external cohort from 16 centers (18,160 cases, area under curve = 0.927). Subgroup analysis showed that the detection rate of GRAPE increased with advancing T stage but was independent of tumor location. Next, we compared the interpretations of GRAPE with those of radiologists and assessed its potential in assisting diagnostic interpretation. Reader studies demonstrated that GRAPE significantly outperformed radiologists, improving sensitivity by 21.8% and specificity by 14.0%, particularly in early-stage GC. Finally, we evaluated GRAPE in real-world opportunistic screening using 78,593 consecutive noncontrast CT scans from a comprehensive cancer center and 2 independent regional hospitals. GRAPE identified persons at high risk with GC detection rates of 24.5% and 17.7% in 2 regional hospitals, with 23.2% and 26.8% of detected cases in T1/T2 stage. Additionally, GRAPE detected GC cases that radiologists had initially missed, enabling earlier diagnosis of GC during follow-up for other diseases. In conclusion, GRAPE demonstrates strong potential for large-scale GC screening, offering a feasible and effective approach for early detection. ClinicalTrials.gov registration: NCT06614179 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科科通通完成签到,获得积分10
5秒前
gyx完成签到 ,获得积分10
5秒前
dong完成签到 ,获得积分10
5秒前
合适的自行车完成签到 ,获得积分10
7秒前
我是老大应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
16秒前
Tonald Yang完成签到 ,获得积分20
16秒前
英俊小蚂蚁完成签到 ,获得积分10
30秒前
Alger完成签到,获得积分10
43秒前
z123完成签到,获得积分10
1分钟前
1分钟前
无一完成签到 ,获得积分0
1分钟前
123完成签到 ,获得积分10
1分钟前
潇洒的凝阳完成签到,获得积分20
1分钟前
mark163发布了新的文献求助10
1分钟前
超帅柚子完成签到 ,获得积分10
1分钟前
贼吖完成签到 ,获得积分10
1分钟前
一株多肉完成签到 ,获得积分10
1分钟前
emxzemxz完成签到 ,获得积分10
1分钟前
tmobiusx完成签到,获得积分10
1分钟前
小青年儿完成签到 ,获得积分10
1分钟前
新奇完成签到 ,获得积分10
2分钟前
玩命的小虾米完成签到 ,获得积分10
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
华仔应助科研通管家采纳,获得10
2分钟前
652183758完成签到 ,获得积分10
2分钟前
innocence2000完成签到 ,获得积分10
2分钟前
ChatGPT发布了新的文献求助10
2分钟前
乐人完成签到 ,获得积分10
2分钟前
妇产科医生完成签到 ,获得积分10
2分钟前
John完成签到,获得积分10
3分钟前
zhangjianzeng完成签到 ,获得积分10
3分钟前
王波完成签到 ,获得积分10
3分钟前
122319完成签到 ,获得积分10
3分钟前
陶醉的代玉完成签到 ,获得积分10
3分钟前
蛋妮完成签到 ,获得积分10
3分钟前
二牛完成签到,获得积分10
3分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
3分钟前
友好的小萱完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4718902
求助须知:如何正确求助?哪些是违规求助? 4080046
关于积分的说明 12616531
捐赠科研通 3784222
什么是DOI,文献DOI怎么找? 2090426
邀请新用户注册赠送积分活动 1116404
科研通“疑难数据库(出版商)”最低求助积分说明 993502