AI-based large-scale screening of gastric cancer from noncontrast CT imaging

癌症 医学 比例(比率) 放射科 内科学 地图学 地理
作者
Zhiyuan Xu,Yingda Xia,Zhilin Zheng,Mengxuan Cao,Guoliang Zheng,Shangqi Chen,Jiancheng Sun,Wujie Chen,Qi Zheng,Siwei Pan,Yanqiang Zhang,Jiahui Chen,Pengfei Yu,Jingli Xu,Jianwei Xu,Zhongwei Qiu,Tiancheng Lin,Boxiang Yun,Jiawen Yao,Wenchao Guo
出处
期刊:Nature Medicine [Springer Nature]
卷期号:31 (9): 3011-3019 被引量:6
标识
DOI:10.1038/s41591-025-03785-6
摘要

Early detection through screening is critical for reducing gastric cancer (GC) mortality. However, in most high-prevalence regions, large-scale screening remains challenging due to limited resources, low compliance and suboptimal detection rate of upper endoscopic screening. Therefore, there is an urgent need for more efficient screening protocols. Noncontrast computed tomography (CT), routinely performed for clinical purposes, presents a promising avenue for large-scale designed or opportunistic screening. Here we developed the Gastric Cancer Risk Assessment Procedure with Artificial Intelligence (GRAPE), leveraging noncontrast CT and deep learning to identify GC. Our study comprised three phases. First, we developed GRAPE using a cohort from 2 centers in China (3,470 GC and 3,250 non-GC cases) and validated its performance on an internal validation set (1,298 cases, area under curve = 0.970) and an independent external cohort from 16 centers (18,160 cases, area under curve = 0.927). Subgroup analysis showed that the detection rate of GRAPE increased with advancing T stage but was independent of tumor location. Next, we compared the interpretations of GRAPE with those of radiologists and assessed its potential in assisting diagnostic interpretation. Reader studies demonstrated that GRAPE significantly outperformed radiologists, improving sensitivity by 21.8% and specificity by 14.0%, particularly in early-stage GC. Finally, we evaluated GRAPE in real-world opportunistic screening using 78,593 consecutive noncontrast CT scans from a comprehensive cancer center and 2 independent regional hospitals. GRAPE identified persons at high risk with GC detection rates of 24.5% and 17.7% in 2 regional hospitals, with 23.2% and 26.8% of detected cases in T1/T2 stage. Additionally, GRAPE detected GC cases that radiologists had initially missed, enabling earlier diagnosis of GC during follow-up for other diseases. In conclusion, GRAPE demonstrates strong potential for large-scale GC screening, offering a feasible and effective approach for early detection. ClinicalTrials.gov registration: NCT06614179 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单完成签到 ,获得积分10
刚刚
酷酷的涵蕾完成签到 ,获得积分10
3秒前
QQ完成签到,获得积分10
7秒前
玛卡巴卡爱吃饭完成签到 ,获得积分10
9秒前
辛勤者完成签到,获得积分10
10秒前
ChatGPT发布了新的文献求助10
20秒前
nick完成签到,获得积分10
23秒前
黑猫老师完成签到 ,获得积分10
25秒前
橙子味的邱憨憨完成签到 ,获得积分0
36秒前
稳重的秋天完成签到,获得积分10
47秒前
不想起名字完成签到,获得积分10
50秒前
54秒前
lyu完成签到,获得积分10
1分钟前
摘星012完成签到 ,获得积分10
1分钟前
阳先森完成签到 ,获得积分10
1分钟前
桂鱼完成签到 ,获得积分10
1分钟前
激动的xx完成签到 ,获得积分10
1分钟前
破罐子完成签到 ,获得积分10
1分钟前
chocolate完成签到 ,获得积分10
1分钟前
1分钟前
发个15分的完成签到 ,获得积分10
1分钟前
郭子啊完成签到 ,获得积分10
2分钟前
浚稚完成签到 ,获得积分10
2分钟前
居居侠完成签到 ,获得积分10
2分钟前
懒人完成签到,获得积分10
2分钟前
左婷完成签到 ,获得积分10
2分钟前
盟主完成签到 ,获得积分10
2分钟前
欢呼的丁真完成签到,获得积分10
2分钟前
zhangnan完成签到 ,获得积分10
2分钟前
llll完成签到 ,获得积分0
2分钟前
zhuosht完成签到 ,获得积分10
2分钟前
yellowonion完成签到 ,获得积分10
2分钟前
欣欣完成签到 ,获得积分10
3分钟前
baa完成签到,获得积分10
3分钟前
lq完成签到 ,获得积分10
3分钟前
调皮平蓝完成签到,获得积分10
3分钟前
猪鼓励完成签到,获得积分10
3分钟前
GG爆完成签到,获得积分10
3分钟前
安然完成签到 ,获得积分10
3分钟前
mrconli完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565171
求助须知:如何正确求助?哪些是违规求助? 4650012
关于积分的说明 14689402
捐赠科研通 4591860
什么是DOI,文献DOI怎么找? 2519386
邀请新用户注册赠送积分活动 1491920
关于科研通互助平台的介绍 1463118