亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DNFE: Directed network flow entropy for detecting tipping points during biological processes

稳健性(进化) 计算机科学 生物网络 基因调控网络 数据挖掘 熵(时间箭头) 引爆点(物理) 生物学数据 复杂网络 算法 计算生物学 生物信息学 基因 生物 电气工程 物理 万维网 量子力学 基因表达 工程类 生物化学
作者
Xueqing Peng,Rui Qiao,Peiluan Li,Luonan Chen
出处
期刊:PLOS Computational Biology [Public Library of Science]
卷期号:21 (7): e1013336-e1013336 被引量:1
标识
DOI:10.1371/journal.pcbi.1013336
摘要

Typically, in dynamic biological processes, there is a critical state or tipping point that marks the transition from one stable state to another, surpassing which a considerable qualitative shift takes place. Identifying this tipping point and its driving network is essential to avert or delay disastrous outcomes. However, most traditional approaches built upon undirected networks still suffer from a lack of robustness and effectiveness when implemented based on high-dimensional small-sample data, especially for single-cell data. To address this challenge, we develop a directed network flow entropy (DNFE) method, which can transform measured omics data into a directed network. This method is applicable to both single-cell RNA-sequencing (scRNA-seq) and bulk data. Applying this algorithm to six real datasets, including three single-cell datasets, two bulk tumor datasets, and a blood dataset, the method is proved to be effective not only in identifying critical states, as well as their dynamic network biomarkers, but also in helping explore regulatory relationships between genes. Numerical simulation results demonstrate that the DNFE algorithm is robust across various noise levels and outperforms existing methods in detecting tipping points. Furthermore, the numerical simulations for 100-node and 1000-node gene regulatory networks illustrate the method’s application for large-scale data. The DNFE method predicts active transcription factors, and further identified “dark genes”, which are usually overlooked with traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昭昭完成签到,获得积分10
7秒前
8秒前
Magali发布了新的文献求助150
10秒前
11秒前
昭昭发布了新的文献求助10
12秒前
18秒前
18秒前
爆米花应助昭昭采纳,获得10
19秒前
猫抓板发布了新的文献求助10
23秒前
共享精神应助猫抓板采纳,获得10
38秒前
50秒前
猫抓板发布了新的文献求助10
54秒前
Qing完成签到 ,获得积分10
1分钟前
JamesPei应助猫抓板采纳,获得10
1分钟前
AixLeft完成签到 ,获得积分10
1分钟前
1分钟前
猫抓板发布了新的文献求助10
1分钟前
把饭拼好给你完成签到 ,获得积分10
2分钟前
善学以致用应助猫抓板采纳,获得10
2分钟前
2分钟前
许晴完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
猫抓板发布了新的文献求助10
3分钟前
孤独又灿烂的夜猫子完成签到 ,获得积分10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
SciGPT应助猫抓板采纳,获得10
3分钟前
3分钟前
3分钟前
猫抓板发布了新的文献求助10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
猫抓板发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671228
求助须知:如何正确求助?哪些是违规求助? 4912699
关于积分的说明 15134266
捐赠科研通 4830020
什么是DOI,文献DOI怎么找? 2586614
邀请新用户注册赠送积分活动 1540279
关于科研通互助平台的介绍 1498455