COV-STFormer for Short-Term Passenger Flow Prediction During COVID-19 in Urban Rail Transit Systems

计算机科学 城市轨道交通 变压器 图形 实时计算 数据挖掘 工程类 运输工程 理论计算机科学 电气工程 电压
作者
Shuxin Zhang,Jinlei Zhang,Lixing Yang,Chengcheng Wang,Ziyou Gao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (5): 3793-3811 被引量:9
标识
DOI:10.1109/tits.2023.3323379
摘要

Accurate passenger flow prediction of urban rail transit systems (URT) is essential for improving the performance of intelligent transportation systems, especially during the epidemic. How to dynamically model the complex spatiotemporal dependencies of passenger flow is the main issue in achieving accurate passenger flow prediction during the epidemic. To solve this issue, this paper proposes a brand-new transformer-based architecture called COVID-19 Spatial-Temporal Transformer Network (COV-STFormer) under the encoder-decoder framework specifically for COVID-19. Concretely, a modified self-attention mechanism named Causal-Convolution ProbSparse Self-Attention (CPSA) is developed to model the complex temporal dependencies of passenger flow. A novel Adaptive Multi-Graph Convolution Network (AMGCN) is introduced to capture the complex and dynamic spatial dependencies by leveraging multiple graphs in a self-adaptive manner. Additionally, the Multi-source Data Fusion block fuses the passenger flow data, COVID-19 confirmed case data, and the relevant social media data to study the impact of COVID-19 to passenger flow. Experiments on real-world passenger flow datasets demonstrate the superiority of COV-STFormer over the other thirteen state-of-the-art methods. Several ablation studies are carried out to verify the effectiveness and reliability of our model structure. Results can provide critical insights for the operation of URT systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
二九十二完成签到,获得积分10
1秒前
1秒前
Koalas应助吴小小采纳,获得20
1秒前
1秒前
1秒前
2秒前
伪善者发布了新的文献求助10
2秒前
2秒前
FashionBoy应助Roinne采纳,获得10
2秒前
2秒前
yuyu发布了新的文献求助10
2秒前
2秒前
WILD完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
好的老师完成签到,获得积分10
3秒前
叨叨小夫夫完成签到,获得积分10
3秒前
3秒前
充电宝应助君安采纳,获得10
4秒前
5秒前
科研通AI5应助大熊采纳,获得10
6秒前
6秒前
6秒前
14完成签到,获得积分10
6秒前
7秒前
大力沛萍完成签到,获得积分10
7秒前
7秒前
William发布了新的文献求助10
7秒前
Skuld发布了新的文献求助10
7秒前
脆脆鲨发布了新的文献求助10
9秒前
9秒前
9秒前
木子发布了新的文献求助10
10秒前
所所应助守诺采纳,获得10
10秒前
深情安青应助伪善者采纳,获得10
10秒前
10秒前
默默曼冬完成签到,获得积分10
11秒前
正直电脑完成签到,获得积分20
13秒前
小肥羊发布了新的文献求助10
13秒前
zhang完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5087747
求助须知:如何正确求助?哪些是违规求助? 4302968
关于积分的说明 13409636
捐赠科研通 4128431
什么是DOI,文献DOI怎么找? 2260914
邀请新用户注册赠送积分活动 1265026
关于科研通互助平台的介绍 1199399