Role of hydrogen-doping for compensating oxygen-defect in non-stoichiometric amorphous In2O3−x: Modeling with a machine-learning potential

密度泛函理论 无定形固体 掺杂剂 材料科学 兴奋剂 化学物理 分子动力学 计算化学 化学 结晶学 光电子学 有机化学
作者
Shingo Urata,Nobuhiro Nakamura,Junghwan Kim,Hideo Hosono
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:134 (11) 被引量:3
标识
DOI:10.1063/5.0149199
摘要

Transparent amorphous oxide semiconductors (TAOSs) are essential materials and ushering in information and communications technologies. The performance of TAOS depends on the microstructures relating to the defects and dopants. Density functional theory (DFT) is a powerful tool to understand the structure–property relationship relating to electronic state; however, the computation of DFT is expensive, which often hinders appropriate structural modeling of amorphous materials. This study, thus, applied machine-learning potential (MLP) to reproduce the DFT level of accuracy with enhanced efficiency, to model amorphous In2O3 (a-In2O3), instead of expensive molecular dynamics (MD) simulations with DFT. MLP-MD could reproduce a-In2O3 structure closer to the experimental data in comparison with DFT-MD and classical MD simulations with an analytical force field. Using the relatively large models obtained by the MLP-MD simulations, it was unraveled that the anionic hydrogen atoms bonding to indium atoms attract electrons instead of the missing oxygen and remedy the optical transparency of the oxygen deficient a-In2O3. The preferential formation of metal–H bonding through the reaction of oxygen vacancy was demonstrated as analogous to InGaZnOx thin films [Joonho et al., Appl. Phys. Lett. 110, 232105 (2017)]. The present simulation suggests that the same mechanism works in a-In2O3, and our finding on the structure–property relationship is informative to clarify the factors affecting the optical transparency of In-based TAOS thin films.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助huangzitong采纳,获得10
刚刚
Ava应助奋斗夏旋采纳,获得10
1秒前
水濑心源发布了新的文献求助30
1秒前
ZHOUZHEN完成签到,获得积分10
5秒前
Yu发布了新的文献求助10
6秒前
橘如发布了新的文献求助30
7秒前
科研通AI2S应助远志采纳,获得10
7秒前
11秒前
Ava应助可靠不凡采纳,获得10
11秒前
科研通AI5应助huangzitong采纳,获得10
14秒前
周陆完成签到 ,获得积分10
14秒前
月亮门完成签到 ,获得积分10
15秒前
16秒前
糊涂的胡发布了新的文献求助10
17秒前
vivid完成签到,获得积分10
19秒前
冷艳的纸鹤完成签到,获得积分10
21秒前
22秒前
yls发布了新的文献求助10
22秒前
23秒前
星辰大海应助Yu采纳,获得10
25秒前
28秒前
奋斗夏旋发布了新的文献求助10
29秒前
糊涂的胡完成签到,获得积分10
29秒前
liuyuh完成签到,获得积分10
30秒前
科研通AI5应助huangzitong采纳,获得10
31秒前
32秒前
HJJHJH发布了新的文献求助10
32秒前
倔驴发布了新的文献求助10
33秒前
烂漫夜梦完成签到,获得积分10
34秒前
今天只做一件事应助HJJHJH采纳,获得10
37秒前
Yu完成签到,获得积分20
38秒前
平淡菲音发布了新的文献求助10
38秒前
EVAN完成签到,获得积分10
38秒前
今后应助prim采纳,获得10
44秒前
辛夷完成签到,获得积分10
47秒前
科研通AI5应助huangzitong采纳,获得10
47秒前
wks666666完成签到,获得积分10
53秒前
小蘑菇应助细心斩采纳,获得30
56秒前
XXF完成签到,获得积分10
57秒前
隐形曼青应助花粉过敏采纳,获得30
57秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801430
求助须知:如何正确求助?哪些是违规求助? 3347140
关于积分的说明 10332038
捐赠科研通 3063426
什么是DOI,文献DOI怎么找? 1681673
邀请新用户注册赠送积分活动 807650
科研通“疑难数据库(出版商)”最低求助积分说明 763843