Role of hydrogen-doping for compensating oxygen-defect in non-stoichiometric amorphous In2O3−x: Modeling with a machine-learning potential

密度泛函理论 无定形固体 掺杂剂 材料科学 兴奋剂 化学物理 分子动力学 计算化学 化学 结晶学 光电子学 有机化学
作者
Shingo Urata,Nobuhiro Nakamura,Junghwan Kim,Hideo Hosono
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:134 (11) 被引量:3
标识
DOI:10.1063/5.0149199
摘要

Transparent amorphous oxide semiconductors (TAOSs) are essential materials and ushering in information and communications technologies. The performance of TAOS depends on the microstructures relating to the defects and dopants. Density functional theory (DFT) is a powerful tool to understand the structure–property relationship relating to electronic state; however, the computation of DFT is expensive, which often hinders appropriate structural modeling of amorphous materials. This study, thus, applied machine-learning potential (MLP) to reproduce the DFT level of accuracy with enhanced efficiency, to model amorphous In2O3 (a-In2O3), instead of expensive molecular dynamics (MD) simulations with DFT. MLP-MD could reproduce a-In2O3 structure closer to the experimental data in comparison with DFT-MD and classical MD simulations with an analytical force field. Using the relatively large models obtained by the MLP-MD simulations, it was unraveled that the anionic hydrogen atoms bonding to indium atoms attract electrons instead of the missing oxygen and remedy the optical transparency of the oxygen deficient a-In2O3. The preferential formation of metal–H bonding through the reaction of oxygen vacancy was demonstrated as analogous to InGaZnOx thin films [Joonho et al., Appl. Phys. Lett. 110, 232105 (2017)]. The present simulation suggests that the same mechanism works in a-In2O3, and our finding on the structure–property relationship is informative to clarify the factors affecting the optical transparency of In-based TAOS thin films.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Hello应助科研通管家采纳,获得10
刚刚
破忒头应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
哆啦十七应助科研通管家采纳,获得50
1秒前
ow发布了新的文献求助10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
傅宛白发布了新的文献求助10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得30
1秒前
浮游应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
iNk应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
zhonglv7应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
小螃蟹关注了科研通微信公众号
2秒前
wjm发布了新的文献求助10
2秒前
2秒前
2秒前
彭于晏应助神勇雨双采纳,获得10
2秒前
wuyueyi完成签到,获得积分10
2秒前
2秒前
oyyh发布了新的文献求助30
2秒前
龙卷风完成签到 ,获得积分10
3秒前
红豆抹茶发布了新的文献求助10
4秒前
4秒前
上官若男应助无聊的玉米采纳,获得10
4秒前
霸气凝云完成签到 ,获得积分10
4秒前
清脆圆子发布了新的文献求助10
5秒前
123发布了新的文献求助10
5秒前
盐鸠牲完成签到 ,获得积分10
5秒前
5秒前
我爱木棉完成签到 ,获得积分10
5秒前
6秒前
yihuifa完成签到 ,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352387
求助须知:如何正确求助?哪些是违规求助? 4485204
关于积分的说明 13962313
捐赠科研通 4385188
什么是DOI,文献DOI怎么找? 2409321
邀请新用户注册赠送积分活动 1401751
关于科研通互助平台的介绍 1375322