Perovskite CsPbBr3 quantum dots capped with zinc acetylacetonate: Gas sensing of ethanol in humidity with aid of machine-learning

乙醇 钙钛矿(结构) 材料科学 量子点 湿度 分子 乙醇燃料 化学工程 纳米技术 无机化学 有机化学 化学 冶金 物理 工程类 热力学
作者
Lei Zhu,Wen Xu,Wufan Xuan,Hui Zhang,Zhihua Yang,Yulong Zhao,Sheng Huang,Xiuquan Gu
出处
期刊:Materials Science in Semiconductor Processing [Elsevier BV]
卷期号:167: 107790-107790
标识
DOI:10.1016/j.mssp.2023.107790
摘要

Ethanol and water are sufficiently miscible, so it is challenging to distinguish ethanol from a mixed atmosphere of ethanol and water. In this work, gas-sensitive materials were prepared with a high response to ethanol, and combined with intelligent algorithms, which can effectively identify ethanol from the mixture of ethanol and water. Specifically, a route was developed to improve the stability of perovskite CsPbBr3 quantum dots (QDs) by passivating its surface with ligands, leading to excellent gas sensing performance at room temperature (RT). Zinc acetylacetonate (Zn(acac)2) was introduced into the reaction mixture to stabilize the surface of thin QDs and purify them without losing their perovskite structure or quantum confinement effect. The as-obtained perovskite QDs with capping Zn(acac)2 displayed an average size of about 9.35 nm, as well as a gas sensing response of 0.275 at 1300 ppm towards ethanol, response/recovery time of 8.5/13.9 s. Such an excellent gas sensing performance was attributed to an interaction of the ethanol molecules with CsPbBr3 QDs through a metal-organic Zn(acac)2 molecule, leading to the enhancement of both the sensitivity and response towards ethanol. Furthermore, the accurate recognition of low-concentration ethanol under humidity conditions was also realized with an aid of machine learning methods. Totally, this work is not only helpful for the synthesis of perovskite QDs, but also develop a method for identifying low-concentration ethanol through machine learning under a wet environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
樊傲云发布了新的文献求助10
2秒前
桃李春风一杯酒完成签到,获得积分10
2秒前
征途的向雁完成签到 ,获得积分10
3秒前
自然的城发布了新的文献求助200
3秒前
SYF发布了新的文献求助10
6秒前
happpy完成签到,获得积分10
7秒前
优秀剑愁完成签到 ,获得积分10
11秒前
大神水瓶座完成签到,获得积分10
13秒前
李健应助积极的凌波采纳,获得10
14秒前
15秒前
15秒前
15秒前
无花果应助huohuo采纳,获得10
16秒前
暮春之初完成签到,获得积分10
17秒前
lin发布了新的文献求助10
18秒前
LFY完成签到 ,获得积分10
18秒前
禾页完成签到 ,获得积分10
18秒前
楼藏鸟应助啦啦啦啦啦采纳,获得30
19秒前
科研通AI5应助111采纳,获得10
21秒前
谨慎的哈密瓜完成签到 ,获得积分10
21秒前
暮春之初发布了新的文献求助10
21秒前
23秒前
乐宝完成签到,获得积分10
24秒前
哈哈哈完成签到 ,获得积分10
25秒前
沿途一天完成签到 ,获得积分10
27秒前
贪玩的元彤完成签到,获得积分10
27秒前
地瓜儿完成签到,获得积分10
28秒前
zho应助十里长亭采纳,获得10
29秒前
温婉的香水完成签到 ,获得积分10
29秒前
30秒前
32秒前
Hzz完成签到,获得积分10
33秒前
GGbond完成签到,获得积分10
34秒前
35秒前
37秒前
海蓝鲸发布了新的文献求助10
38秒前
金勇发布了新的文献求助10
38秒前
39秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
The Framed World: Tourism, Tourists and Photography (New Directions in Tourism Analysis) 1st Edition 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825602
求助须知:如何正确求助?哪些是违规求助? 3367781
关于积分的说明 10447735
捐赠科研通 3087186
什么是DOI,文献DOI怎么找? 1698485
邀请新用户注册赠送积分活动 816805
科研通“疑难数据库(出版商)”最低求助积分说明 769973