Improvement of motor imagery electroencephalogram decoding by iterative weighted Sparse-Group Lasso

计算机科学 运动表象 模式识别(心理学) 人工智能 解码方法 判别式 特征选择 脑-机接口 特征(语言学) 支持向量机 聚类分析 机器学习 脑电图 算法 哲学 精神科 语言学 心理学
作者
Bin Liu,Fuwang Wang,Shiwei Wang,Junxiang Chen,Guilin Wen,Rongrong Fu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122286-122286
标识
DOI:10.1016/j.eswa.2023.122286
摘要

Discriminative feature selection is vital for enhancing motor imagery decoding performance in electroencephalogram (EEG) signals. However, existing feature optimization methods have not sufficiently explored the intrinsic attribute distribution of features and their associations with the target class, which could result in spurious correlations between optimized features and class labels, yielding suboptimal performance. Therefore, this study proposed an iterative Weighted Sparse-Group Lasso (iWSGL) model for optimizing Common Spatial Pattern (CSP)-based high-dimensional features, thus further enhancing the decoding accuracy of motor imagery. Specifically, the affinity propagation (AP) clustering algorithm was utilized to adaptively partition the high-dimensional features into multiple groups based on the underlying relationships among them. To evaluate the significance of individual feature within each group and the overall significance of the groups themselves, a weight calculation method was proposed based on conditional entropy. With the weights and feature structural information, a weighted sparse regression model was devised within the iterative Sparse-Group Lasso (iSGL) framework to jointly optimize the CSP-based high-dimensional features. The performance of the proposed method was validated on three datasets using the support vector machine (SVM). The experimental results exhibited the exceptional superiority of the proposed method over the current CSP and its variants, demonstrating its remarkable performance. These findings imply that the proposed model can offer a novel optimization strategy for enhancing pattern recognition of brain intentions in Brain-Computer Interface (BCI) applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
terry完成签到,获得积分10
刚刚
SciGPT应助ottsannn采纳,获得10
刚刚
1秒前
Toong完成签到,获得积分20
2秒前
3秒前
phuocnlh完成签到,获得积分10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得20
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
Xiaoxiao应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
细胞呵呵完成签到,获得积分10
7秒前
Leif举报chunchun求助涉嫌违规
9秒前
论高等数学的无用性完成签到 ,获得积分10
10秒前
吴所畏惧发布了新的文献求助10
10秒前
朱光辉完成签到,获得积分20
12秒前
chen发布了新的文献求助10
12秒前
12秒前
冰魂应助吴所畏惧采纳,获得10
21秒前
乔一乔完成签到,获得积分10
23秒前
田様应助傲娇的曼香采纳,获得10
24秒前
健忘数据线完成签到 ,获得积分10
25秒前
缥缈的松鼠完成签到 ,获得积分10
27秒前
儒雅猕猴桃完成签到,获得积分10
31秒前
深耕完成签到,获得积分10
32秒前
若月画萤完成签到,获得积分10
39秒前
隐形的天问完成签到,获得积分20
41秒前
42秒前
赘婿应助荼蘼采纳,获得10
45秒前
45秒前
科研通AI5应助哭泣的灵寒采纳,获得10
46秒前
辞安发布了新的文献求助10
47秒前
称心涵柳发布了新的文献求助10
48秒前
49秒前
BacktoDeutsche完成签到,获得积分10
50秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800254
求助须知:如何正确求助?哪些是违规求助? 3345547
关于积分的说明 10325792
捐赠科研通 3061969
什么是DOI,文献DOI怎么找? 1680716
邀请新用户注册赠送积分活动 807201
科研通“疑难数据库(出版商)”最低求助积分说明 763557