Global-and-Local Attention-Based Reinforcement Learning for Cooperative Behaviour Control of Multiple UAVs

强化学习 灵活性(工程) 避碰 计算机科学 适应性 控制(管理) 任务(项目管理) 过程(计算) 人工智能 工程类 分布式计算 碰撞 生态学 统计 数学 计算机安全 系统工程 生物 操作系统
作者
Jinchao Chen,Tingyang Li,Ying Zhang,Tao You,Yantao Lu,Prayag Tiwari,Neeraj Kumar
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (3): 4194-4206 被引量:102
标识
DOI:10.1109/tvt.2023.3327571
摘要

Due to the strong adaptability and high flexibility, unmanned aerial vehicles (UAVs) have been extensively studied and widely applied in both civil and military applications. Although UAVs can achieve significant cost reduction and performance enhancement in large-scale systems by taking full advantage of their cooperation and coordination, they result in a serious cooperative behaviour control problem. Especially in dynamic environments, the cooperative behaviour control problem which has to quickly produce a safe and effective behaviour decision for each UAV to achieve group missions, is NP-hard and difficult to settle. In this work, we design a global-and-local attention-based reinforcement learning algorithm for the cooperative behaviour control problem of UAVs. First, with the motion and coordination models, we analyze the collision avoidance, motion state update, and task execution constraints of multiple UAVs, and abstract the cooperative behaviour control problem as a multi-constraint decision-making one. Then, inspired from the human-learning process where more attention is devoted to the important parts of data, we design a multi-agent reinforcement learning algorithm with a global-and-local attention mechanism to cooperatively control the behaviours of UAVs and achieve the coordination. Simulation experiments in a multi-agent particle environment provided by OpenAI are conducted to verify the effectiveness and efficiency of the proposed approach. Compared with baselines, our approach shows significant advantages in mean reward, training time, and coordination effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xshzhou完成签到,获得积分10
1秒前
1秒前
1秒前
无我完成签到,获得积分10
1秒前
正直的阑悦完成签到,获得积分10
1秒前
活泼小霜发布了新的文献求助10
1秒前
JEEH发布了新的文献求助10
1秒前
微笑子慧完成签到,获得积分10
2秒前
cc完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
6秒前
6秒前
科研通AI2S应助诚心梦蕊采纳,获得10
6秒前
南桃完成签到,获得积分10
7秒前
zyin完成签到,获得积分10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得30
9秒前
浮游应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
美满的砖头完成签到,获得积分10
10秒前
科研通AI6应助DU采纳,获得10
10秒前
顺心飞雪发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
yyyy发布了新的文献求助10
11秒前
li完成签到 ,获得积分10
11秒前
杜文倩完成签到 ,获得积分10
12秒前
在水一方应助窦鞅采纳,获得10
13秒前
13秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5241165
求助须知:如何正确求助?哪些是违规求助? 4407970
关于积分的说明 13720750
捐赠科研通 4276970
什么是DOI,文献DOI怎么找? 2346822
邀请新用户注册赠送积分活动 1343948
关于科研通互助平台的介绍 1302074