A Machine Learning‐Based Unenhanced Radiomics Approach to Distinguishing Between Benign and Malignant Breast Lesions Using T2‐Weighted and Diffusion‐Weighted MRI

医学 乳房磁振造影 乳腺癌 回顾性队列研究 放射科 逻辑回归 乳腺摄影术 无线电技术 卡帕 乳房成像 磁共振弥散成像 双雷达 磁共振成像 核医学 癌症 内科学 语言学 哲学
作者
Yulu Liu,Xiaoxuan Jia,Jiaqi Zhao,Peng Yuan,Xun Yao,Xuege Hu,Jingjing Cui,H. Chen,Xiufeng Chen,Jing Wu,Nan Hong,Shu Wang,Yi Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:60 (2): 600-612 被引量:2
标识
DOI:10.1002/jmri.29111
摘要

Background Breast MRI has been recommended as supplemental screening tool to mammography and breast ultrasound of breast cancer by international guidelines, but its long examination time and use of contrast material remains concerning. Purpose To develop an unenhanced radiomics model with using non‐gadolinium based sequences for detecting breast cancer based on T2‐weighted (T2W) and diffusion‐weighted (DW) MRI. Study Type Retrospective analysis followed by retrospective and prospective cohorts study. Population 1760 patients: Of these, 1293 for model construction ( n = 775 for training and 518 for validation). The remaining patients for model testing in internal retrospective ( n = 167), internal prospective ( n = 188), and external retrospective ( n = 112) cohorts. Field Strength/Sequence 3.0T MR scanners from two institution. T2WI, DWI, and first contrast‐enhanced T1‐weighted sequence. Assessment AUCs in distinguishing breast cancer were compared between combined model with gadolinium agent sequence and unenhanced model. Subsequently, the AUCs in testing cohorts of unenhanced model was compared with two radiologists' diagnosis for this research. Finally, patient subgroup analysis in testing cohorts was performed based on clinical subgroups and different types of malignancies. Statistical Tests Mann–Whitney U test, Kruskal‐Wallis H test, chi‐square test, weighted kappa test, and DeLong's test. Results The unenhanced radiomics model performed best under Gaussian process (GP) classifiers (AUC: training, 0.893; validation, 0.848) compared to support vector machine (SVM) and logistic, showing favorable prediction in testing cohorts (AUCs, 0.818–0.840). The AUCs for the unenhanced radiomics model were not statistically different in five cohorts from those of the combined radiomics model ( P , 0.317–0.816), as well as the two radiologists ( P , 0.181–0.918). The unenhanced radiomics model was least successful in identifying ductal carcinoma in situ, whereas did not show statistical significance in other subgroups. Data Conclusion An unenhanced radiomics model based on T2WI and DWI has comparable diagnostic accuracy to the combined model using the gadolinium agent. Level of Evidence 4 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力的柠檬应助sakegeda采纳,获得10
1秒前
1秒前
慕青应助YYY666采纳,获得10
2秒前
领导范儿应助盛夏如花采纳,获得10
3秒前
刘春亚发布了新的文献求助10
3秒前
3秒前
Drunkard发布了新的文献求助10
4秒前
4秒前
Baymax发布了新的文献求助10
5秒前
科研狗完成签到,获得积分10
5秒前
6秒前
小轩爱晴发布了新的文献求助10
6秒前
端庄的煎蛋完成签到,获得积分0
6秒前
受伤金鑫发布了新的文献求助10
6秒前
helly完成签到,获得积分10
7秒前
xx完成签到,获得积分10
9秒前
玛卡巴卡发布了新的文献求助10
10秒前
ketty发布了新的文献求助30
10秒前
Baymax完成签到,获得积分10
12秒前
Fwisme完成签到,获得积分10
13秒前
玛卡巴卡完成签到,获得积分10
15秒前
小轩爱晴完成签到,获得积分20
15秒前
小魏哥完成签到,获得积分10
18秒前
chestnut灬完成签到 ,获得积分10
18秒前
受伤金鑫发布了新的文献求助10
19秒前
21秒前
23秒前
25秒前
烤地瓜要吃甜完成签到,获得积分10
26秒前
dimples完成签到 ,获得积分10
27秒前
28秒前
受伤金鑫完成签到,获得积分10
33秒前
xzx发布了新的文献求助10
33秒前
34秒前
w2503完成签到,获得积分10
34秒前
本凡完成签到 ,获得积分10
36秒前
38秒前
38秒前
完美世界应助炙热芷蕊采纳,获得10
39秒前
Clearly完成签到 ,获得积分10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781487
求助须知:如何正确求助?哪些是违规求助? 3327147
关于积分的说明 10229660
捐赠科研通 3041974
什么是DOI,文献DOI怎么找? 1669742
邀请新用户注册赠送积分活动 799258
科研通“疑难数据库(出版商)”最低求助积分说明 758757