PhAI: A deep learning approach to solve the crystallographic phase problem

移相器 相位问题 从头算 人工神经网络 衍射 相(物质) 分辨率(逻辑) 计算机科学 结晶学 物理 算法 人工智能 化学 量子力学 光学
作者
Anders Ø. Madsen,Anders S. Larsen,Toms Rekis
标识
DOI:10.26434/chemrxiv-2023-fcdps
摘要

For more than 100 years, X-ray crystallography has provided a unique view on the three-dimensional structure of atoms and molecules in crystals. However, to determine even the simplest structures now and a hundred years ago, one needs to overcome a mathematical hurdle for which the solution is not known even to this day. To reconstruct the 3-dimensional electron density map, from which the structure can be inferred, the complex structure factors F = |F| exp(iφ) of a sufficiently large number of diffracted reflections must be known. In a conventional diffraction experiment, only the amplitudes |F| are obtained, while the phases φ are lost. This is the crystallographic phase problem. Seventy years of research has established successful ab initio phasing methods such as direct methods and charge flipping. However, these methods are limited to atomic- resolution data, complicating structure determination from weakly-scattering crystals. Here, we show that a neural network can solve the crystallographic phase problem at a resolution of only 2 Å. We have developed an approach to generate millions of artificial structures and respective diffraction data for training of a neural network. We demonstrate that ab initio phasing based on this neural network is possible using 10 % to 20 % of the data needed for present-day methods, breaking the paradigm that atomic resolution is necessary for ab initio structure solution. The current neural network works in common centrosymmetric space groups and for modest unit cell dimensions, and suggests that neural networks can be used to solve the phase problem in the general case. This approach will enable structure solution for weakly-scattering crystals such as metal-organic frameworks or nanometer-sized crystals investigated using electron diffraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Waiting完成签到,获得积分20
刚刚
李健的小迷弟应助Ada采纳,获得10
1秒前
1秒前
哈喽小雪发布了新的文献求助10
1秒前
在水一方应助吃货采纳,获得10
2秒前
可爱的吐司完成签到,获得积分10
3秒前
4秒前
CongYalong完成签到,获得积分10
4秒前
健壮的秋寒完成签到,获得积分10
5秒前
上官醉山发布了新的文献求助10
5秒前
6秒前
吴倩完成签到,获得积分10
6秒前
orixero应助哈喽小雪采纳,获得10
6秒前
lll完成签到,获得积分20
7秒前
CipherSage应助kmkz采纳,获得10
7秒前
Silverexile完成签到,获得积分10
7秒前
7秒前
小胖子完成签到 ,获得积分10
8秒前
念之完成签到 ,获得积分10
8秒前
Lan发布了新的文献求助10
9秒前
文文发布了新的文献求助10
9秒前
郑文涛完成签到,获得积分10
9秒前
霍涫完成签到,获得积分10
9秒前
9秒前
ainiowo应助Minions采纳,获得10
10秒前
CodeCraft应助陈琳采纳,获得10
10秒前
wl1700发布了新的文献求助20
10秒前
10秒前
wzx应助勋章采纳,获得10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
高贵花瓣完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
12秒前
罂粟完成签到,获得积分10
12秒前
懒洋洋发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Food Microbiology - An Introduction (5th Edition) 500
苯丙氨酸解氨酶的祖先序列重建及其催化性能 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4845398
求助须知:如何正确求助?哪些是违规求助? 4145607
关于积分的说明 12837257
捐赠科研通 3892244
什么是DOI,文献DOI怎么找? 2139545
邀请新用户注册赠送积分活动 1159406
关于科研通互助平台的介绍 1060148