已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Combined Model Integrating Radiomics and Deep Learning Based on Contrast-Enhanced CT for Preoperative Staging of Laryngeal Carcinoma

无线电技术 人工智能 医学 放射科 试验装置 阶段(地层学) 特征(语言学) 计算机科学 机器学习 古生物学 语言学 哲学 生物
作者
Xinwei Chen,Qiang Yu,Juan Peng,Zhiyang He,Quanjiang Li,Youquan Ning,Jinming Gu,Fajin Lv,Huan Jiang,Kai Xie
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (12): 3022-3031 被引量:5
标识
DOI:10.1016/j.acra.2023.06.029
摘要

Accurate staging of laryngeal carcinoma can inform appropriate treatment decision-making. We developed a radiomics model, a deep learning (DL) model, and a combined model (incorporating radiomics features and DL features) based on the venous-phase CT images and explored the performance of these models in stratifying patients with laryngeal carcinoma into stage I-II and stage III-IV, and also compared these models with radiologists.Three hundreds and nineteen patients with pathologically confirmed laryngeal carcinoma were randomly divided into a training set (n = 223) and a test set (n = 96). In the training set, the radiomics features with inter- and intraclass correlation coefficients (ICCs)> 0.75 were screened by Spearman correlation analysis and recursive feature elimination (RFE); then support vector machine (SVM) classifier was applied to develop the radiomics model. The DL model was built using ResNet 18 by the cropped 2D regions of interest (ROIs) in the maximum tumor ROI slices and the last fully connected layer of this network served as the DL feature extractor. Finally, a combined model was developed by pooling the radiomics features and extracted DL features to predict the staging.The area under the curves (AUCs) for radiomics model, DL model, and combined model in the test set were 0.704 (95% confidence interval [CI]: 0.588-0.820), 0.724 (95% CI: 0.613-0.835), and 0.849 (95% CI: 0.755-0.943), respectively. The combined model outperformed the radiomics model and the DL model in discriminating stage I-II from stage III-IV (p = 0.031 and p = 0.020, respectively). Only the combined model performed significantly better than radiologists (p < 0.050 for both).The combined model can help tailor the therapeutic strategy for laryngeal carcinoma patients by enabling more accurate preoperative staging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾一洋关注了科研通微信公众号
1秒前
3秒前
tangz完成签到,获得积分20
4秒前
iorpi完成签到,获得积分10
5秒前
yikefanqie发布了新的文献求助10
13秒前
16秒前
不要慌完成签到,获得积分10
16秒前
18秒前
Silence完成签到 ,获得积分10
20秒前
小二郎应助Yahaha采纳,获得10
22秒前
白天科室黑奴and晚上实验室牛马完成签到 ,获得积分10
22秒前
25秒前
科目三应助聪明的破茧采纳,获得10
27秒前
村上春树的摩的完成签到 ,获得积分10
28秒前
28秒前
璇er完成签到,获得积分20
28秒前
Lorain发布了新的文献求助30
32秒前
33秒前
折颜完成签到,获得积分20
33秒前
淡淡念瑶发布了新的文献求助10
35秒前
半枝桃完成签到 ,获得积分10
37秒前
39秒前
科研通AI5应助Lorain采纳,获得10
42秒前
Owen应助Lorain采纳,获得10
42秒前
Z赵完成签到 ,获得积分10
44秒前
思源应助折颜采纳,获得10
47秒前
小牙医完成签到,获得积分10
47秒前
淡淡念瑶完成签到,获得积分10
49秒前
璇er发布了新的文献求助10
51秒前
52秒前
威武忆山完成签到 ,获得积分10
53秒前
xona完成签到,获得积分10
53秒前
yikefanqie完成签到,获得积分20
53秒前
神外第一刀完成签到 ,获得积分10
57秒前
西西弗斯完成签到,获得积分10
57秒前
LiXingchen完成签到,获得积分10
1分钟前
大模型应助温柔乌冬面采纳,获得10
1分钟前
sugarballer完成签到 ,获得积分10
1分钟前
1分钟前
jyy完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780773
求助须知:如何正确求助?哪些是违规求助? 3326313
关于积分的说明 10226398
捐赠科研通 3041354
什么是DOI,文献DOI怎么找? 1669353
邀请新用户注册赠送积分活动 799051
科研通“疑难数据库(出版商)”最低求助积分说明 758723