Magnetocardiography-based coronary artery disease severity assessment and localization using spatiotemporal features

计算机辅助设计 冠状动脉疾病 心磁图 支持向量机 人工智能 扬抑 医学 模式识别(心理学) 线性判别分析 心脏病学 狭窄 判别式 相关性 内科学 动脉 计算机科学 数学 工程类 几何学 工程制图
作者
Xiaole Han,Jiaojiao Pang,Dong Xu,Ruizhe Wang,Fei Xie,Yanfei Yang,Jiguang Sun,Yu Li,Ruochuan Li,Xiaofei Yin,Yansong Xu,Jiaxin Fan,Yiming Dong,Xiaohui Wu,Xiaoyun Yang,Dexin Yu,Dawei Wang,Yang Gao,Min Xiang,Feng Xu
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:44 (12): 125002-125002 被引量:14
标识
DOI:10.1088/1361-6579/ad0f70
摘要

Abstract Objective. This study aimed to develop an automatic and accurate method for severity assessment and localization of coronary artery disease (CAD) based on an optically pumped magnetometer magnetocardiography (MCG) system. Approach. We proposed spatiotemporal features based on the MCG one-dimensional signals, including amplitude, correlation, local binary pattern, and shape features. To estimate the severity of CAD, we classified the stenosis as absence or mild, moderate, or severe cases and extracted a subset of features suitable for assessment. To localize CAD, we classified CAD groups according to the location of the stenosis, including the left anterior descending artery (LAD), left circumflex artery (LCX), and right coronary artery (RCA), and separately extracted a subset of features suitable for determining the three CAD locations. Main results. For CAD severity assessment, a support vector machine (SVM) achieved the best result, with an accuracy of 75.1%, precision of 73.9%, sensitivity of 67.0%, specificity of 88.8%, F1-score of 69.8%, and area under the curve of 0.876. The highest accuracy and corresponding model for determining locations LAD, LCX, and RCA were 94.3% for the SVM, 84.4% for a discriminant analysis model, and 84.9% for the discriminant analysis model. Significance . The developed method enables the implementation of an automated system for severity assessment and localization of CAD. The amplitude and correlation features were key factors for severity assessment and localization. The proposed machine learning method can provide clinicians with an automatic and accurate diagnostic tool for interpreting MCG data related to CAD, possibly promoting clinical acceptance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助欧阳孤云采纳,获得50
刚刚
可爱的函函应助呃呃呃c采纳,获得10
刚刚
gyhmm发布了新的文献求助10
刚刚
iwbs0326发布了新的文献求助10
1秒前
1秒前
1秒前
华仔应助南风南下采纳,获得10
1秒前
1秒前
白bai完成签到,获得积分10
2秒前
李爱国应助zhangmaomao采纳,获得10
2秒前
蒟蒻发布了新的文献求助10
2秒前
2秒前
Tangerine发布了新的文献求助10
2秒前
2秒前
隐形曼青应助夏夏采纳,获得10
4秒前
123nm完成签到,获得积分10
4秒前
白bai发布了新的文献求助10
4秒前
zhaowenxian发布了新的文献求助10
5秒前
moushang发布了新的文献求助10
5秒前
七塔蹦发布了新的文献求助10
5秒前
5秒前
明亮冰颜发布了新的文献求助10
6秒前
libe发布了新的文献求助10
6秒前
6秒前
Uranus发布了新的文献求助10
6秒前
7秒前
山复尔尔发布了新的文献求助10
7秒前
1234发布了新的文献求助10
8秒前
田様应助崔雪峰采纳,获得10
8秒前
8秒前
9秒前
朴素彤完成签到,获得积分10
9秒前
llllllll完成签到,获得积分10
9秒前
俭朴凝云完成签到,获得积分10
10秒前
10秒前
沙瑞金完成签到,获得积分10
10秒前
杨帆完成签到,获得积分10
10秒前
haoooooooooooooo应助肖易采纳,获得20
11秒前
Miya完成签到,获得积分10
11秒前
pxwhhh发布了新的文献求助10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5691791
求助须知:如何正确求助?哪些是违规求助? 5085965
关于积分的说明 15206222
捐赠科研通 4849432
什么是DOI,文献DOI怎么找? 2601032
邀请新用户注册赠送积分活动 1552781
关于科研通互助平台的介绍 1511181