已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Accurate Model Parameter Identification to Boost Precise Aging Prediction of Lithium‐Ion Batteries: A Review

电池(电) 鉴定(生物学) 计算机科学 加速老化 锂离子电池 降级(电信) 可靠性工程 人工智能 工程类 电信 功率(物理) 植物 物理 量子力学 生物
作者
Shicong Ding,Yiding Li,Haifeng Dai,Li Wang,Xiangming He
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:13 (39) 被引量:41
标识
DOI:10.1002/aenm.202301452
摘要

Abstract Precise prediction of lithium‐ion cell level aging under various operating conditions is an imperative but challenging part of ensuring the quality performance of emerging applications such as electric vehicles and stationary energy storage systems. Accurate and real‐time battery‐aging prediction models, which require an exact understanding of the degradation mechanisms of battery components and materials, could in turn provide new insights for materials and battery basic research. Furthermore, the primary barrier to meaningful artificial intelligence/machine learning for accelerating the prediction period is the exploitation of accurate aging mechanistic descriptors. This review comprehensively summarizes the evolution of deterioration mechanisms at the material and cell level in different environments and usage scenarios, including the intricate relationships between aging mechanisms, degradation modes, and external influences, which are the cornerstones of modeling simulation and machine learning techniques. Recent advances in electrochemical models coupled with internal battery degradation mechanisms as well as identification and tracking of aging parameters are shown, with particular emphasis on electrode balance and the anticipated trend of machine learning‐assisted reliable remaining useful life prediction. Precise simulation prediction of cell level aging will continue to play an essential role in advanced smart battery research and management, enhancing its performance while shortening experimental sequences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小李发布了新的文献求助10
1秒前
ubiquitin发布了新的文献求助10
2秒前
Zhang完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
taoyiyan完成签到,获得积分10
3秒前
ubiquitin完成签到,获得积分10
7秒前
9秒前
ll发布了新的文献求助10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
Criminology34应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
zhoududu完成签到,获得积分10
12秒前
16秒前
香蕉觅云应助grace采纳,获得10
18秒前
gxhyuanhe发布了新的文献求助10
18秒前
搜集达人应助江酒采纳,获得10
19秒前
20秒前
Aphcity应助个性的饼干采纳,获得20
21秒前
lamborghini193完成签到,获得积分0
21秒前
23秒前
小蘑菇应助zhangxin采纳,获得10
24秒前
chen01hang发布了新的文献求助10
25秒前
25秒前
小秦完成签到 ,获得积分10
26秒前
小小鱼发布了新的文献求助10
27秒前
小蘑菇应助gxhyuanhe采纳,获得10
27秒前
27秒前
周周发布了新的文献求助10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
Atlas of the Rabbit Brain and Spinal Cord 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5018226
求助须知:如何正确求助?哪些是违规求助? 4257622
关于积分的说明 13269517
捐赠科研通 4062065
什么是DOI,文献DOI怎么找? 2221787
邀请新用户注册赠送积分活动 1230966
关于科研通互助平台的介绍 1153701