Joint contrastive triple-learning for deep multi-view clustering

判别式 人工智能 特征学习 特征(语言学) 计算机科学 聚类分析 深度学习 对比度(视觉) 模式识别(心理学) 光学(聚焦) 代表(政治) 机器学习 语言学 光学 物理 哲学 政治 法学 政治学
作者
Shizhe Hu,Guoliang Zou,Chaoyang Zhang,Zhengzheng Lou,Ruilin Geng,Yangdong Ye
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:60 (3): 103284-103284 被引量:31
标识
DOI:10.1016/j.ipm.2023.103284
摘要

Deep multi-view clustering (MVC) is to mine and employ the complex relationships among views to learn the compact data clusters with deep neural networks in an unsupervised manner. The more recent deep contrastive learning (CL) methods have shown promising performance in MVC by learning cluster-oriented deep feature representations, which is realized by contrasting the positive and negative sample pairs. However, most existing deep contrastive MVC methods only focus on the one-side contrastive learning, such as feature-level or cluster-level contrast, failing to integrating the two sides together or bringing in more important aspects of contrast. Additionally, most of them work in a separate two-stage manner, i.e., first feature learning and then data clustering, failing to mutually benefit each other. To fix the above challenges, in this paper we propose a novel joint contrastive triple-learning framework to learn multi-view discriminative feature representation for deep clustering, which is threefold, i.e., feature-level alignment-oriented and commonality-oriented CL, and cluster-level consistency-oriented CL. The former two submodules aim to contrast the encoded feature representations of data samples in different feature levels, while the last contrasts the data samples in the cluster-level representations. Benefiting from the triple contrast, the more discriminative representations of views can be obtained. Meanwhile, a view weight learning module is designed to learn and exploit the quantitative complementary information across the learned discriminative features of each view. Thus, the contrastive triple-learning module, the view weight learning module and the data clustering module with these fused features are jointly performed, so that these modules are mutually beneficial. The extensive experiments on several challenging multi-view datasets show the superiority of the proposed method over many state-of-the-art methods, especially the large improvement of 15.5% and 8.1% on Caltech-4V and CCV in terms of accuracy. Due to the promising performance on visual datasets, the proposed method can be applied into many practical visual applications such as visual recognition and analysis. The source code of the proposed method is provided at https://github.com/ShizheHu/Joint-Contrastive-Triple-learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
细心不评完成签到,获得积分10
1秒前
wu完成签到,获得积分10
1秒前
暖阳完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
night发布了新的文献求助10
2秒前
ZZ完成签到,获得积分10
4秒前
柳易槐完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
SciGPT应助木目丶采纳,获得10
6秒前
guoanhong完成签到,获得积分20
6秒前
马婷婷完成签到,获得积分20
6秒前
平文发布了新的文献求助30
6秒前
酒酿萝卜皮完成签到,获得积分10
6秒前
打打应助ha采纳,获得10
6秒前
SYY完成签到,获得积分10
6秒前
香蕉觅云应助雪球采纳,获得10
7秒前
zheng发布了新的文献求助10
7秒前
7秒前
8秒前
希望天下0贩的0应助jzyy采纳,获得10
8秒前
充电宝应助Yolanda采纳,获得10
9秒前
研友_5Z4ZA5完成签到,获得积分10
10秒前
协和_子鱼发布了新的文献求助10
10秒前
Ekkoye完成签到,获得积分10
11秒前
stife32应助蒿标标采纳,获得10
11秒前
11秒前
严昌发布了新的文献求助10
11秒前
pretend完成签到,获得积分10
12秒前
14秒前
14秒前
牛马完成签到,获得积分10
14秒前
彭于彦祖应助小周小周采纳,获得20
14秒前
snail完成签到 ,获得积分10
15秒前
硫化铅完成签到,获得积分10
15秒前
yzlsci完成签到,获得积分0
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785225
求助须知:如何正确求助?哪些是违规求助? 3330781
关于积分的说明 10248184
捐赠科研通 3046175
什么是DOI,文献DOI怎么找? 1671900
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868