摘要
Spinel cobalt ferrite (CoFe2O4, CFO) nanoparticles (NPs) are a major focus of fundamental science and technological innovation due to their distinctive mix of magnetic, electrical, and chemical characteristics. CFO NPs have outstanding chemical stability, modest saturation magnetism (∼80 emu/g), a high Curie temperature (∼793 K), and significant magnetocrystalline anisotropy. These characteristics, further improved by cation substitution and surface functionalization, enable a wide range of applications. This review provides a comprehensive analysis of CFO NPs, covering their synthesis methods, physicochemical characterization, surface modifications, and diverse applications. We compare the environmental impact, scalability, yield, and particle size control of a variety of synthesis techniques, including co-precipitation, hydrothermal, sol-gel route, combustion method, microemulsion, thermal decomposition, electrochemical synthesis, polyol method, and green synthesis methods. The sustainable alternative of green synthesis, which employs plant- and microbe-mediated biosynthesis, is becoming increasingly important in the biomedical and environmental sectors. Furthermore, we explore advanced surface functionalization techniques that employ monomeric, inorganic, and polymeric stabilizers to improve the biocompatibility and stability of CFO NPs. The effects of cation substitution (such as transition metals and rare-earth dopants) on the physicochemical and magnetic properties of CFO NPs are examined in detail, addressing challenges like cost and stability in real-world applications. Moreover, the present review provides a detailed discussion correlating structural, morphological, magnetic, dielectric, optical, and electrical properties of CFO with synthesis methods and modifications. The traditional energy storage and conversion applications of CFO are comprehensively discussed. Additionally, the review highlights magnetic applications, biomedical applications (e.g., MRI contrast agents, magnetic hyperthermia, and biosensors), the role of CFO in electronics and optoelectronics, purification and catalysis applications, as well as advances in electromagnetic technologies. Emerging applications, including their roles in quantum computing, nanorobotics, tissue engineering, and bioimaging, are also discussed, emphasizing the cutting-edge potential of CFO NPs in multifunctional technologies. The objective of this review is to critically evaluate recent advancements, challenges, and future research directions to bridge the divide in understanding CFO NPs. This systematic evaluation establishes a strong foundation for researchers, allowing them to investigate novel applications of CFO NPs in both current and emerging technological domains.