作者
Jakub Fiegler-Rudol,Barbara Lipka,Katarzyna Kapłon,Magdalena Moś,Dariusz Skaba,Aleksandra Kawczyk‐Krupka,Rafał Wiench
摘要
Candida albicans is a significant pathogen in various fungal infections, including oral candidiasis and denture stomatitis. As antifungal resistance rises globally, there is an urgent need for alternative treatment strategies. Antimicrobial photodynamic therapy (aPDT), utilizing a photosensitizer and light to produce reactive oxygen species (ROS), has emerged as a promising approach. Rose Bengal (RB), a xanthene dye, exhibits a high singlet oxygen quantum yield, making it a candidate for aPDT. However, its efficacy in C. albicans treatment has been inconsistent, particularly against biofilm-associated infections, which are more resistant to conventional therapies. This systematic review evaluates the efficacy of Rose Bengal-mediated aPDT in combating C. albicans infections by synthesizing data from studies conducted over the past decade. We focus on the effectiveness of RB across different experimental conditions, including planktonic and biofilm forms of C. albicans. The review also explores the synergy between RB and other agents, such as potassium iodide, and compares the outcomes of RB-mediated aPDT to other photosensitizers and conventional antifungal treatments. Despite its potential, RB-aPDT shows variable effectiveness due to differences in experimental protocols, such as the photosensitizer concentration, incubation times, and light parameters. The review identifies the key limitations, such as RB’s poor biofilm penetration and high dark toxicity at elevated concentrations, which hinder its clinical applicability. The combination of RB with potassium iodide enhances its antifungal efficacy, suggesting that further optimization could improve its clinical potential. Overall, while Rose Bengal-mediated aPDT holds promise as a novel antifungal treatment, further research is needed to standardize protocols, enhance delivery systems, and validate its efficacy in vivo and clinical settings.