A Review of In Silico Approaches for Discovering Natural Viral Protein Inhibitors in Aquaculture Disease Control

生物信息学 药物发现 虚拟筛选 计算生物学 水产养殖 生物 生化工程 风险分析(工程) 持续性 药物开发 生物技术 计算机科学 生物信息学 药品 工程类 生态学 药理学 业务 渔业 基因 生物化学
作者
Lưu Tăng Phúc Khang,Nguyen Dinh‐Hung,Sk Injamamul Islam,Sefti Heza Dwinanti,Samuel Mwakisha Mwamburi,Patima Permpoonpattana,Nguyen Vu Linh
出处
期刊:Journal of Fish Diseases [Wiley]
被引量:1
标识
DOI:10.1111/jfd.14120
摘要

Viral diseases pose a significant threat to the sustainability of global aquaculture, causing economic losses and compromising food security. Traditional control methods often demonstrate limited effectiveness, highlighting the need for alternative approaches. The integration of computational methods for the discovery of natural compounds shows promise in developing antiviral treatments. This review critically explores how both traditional and advanced in silico computational techniques can efficiently identify natural compounds with potential inhibitory effects on key pathogenic proteins in major aquaculture pathogens. It highlights fundamental approaches, including structure-based and ligand-based drug design, high-throughput virtual screening, molecular docking, and absorption, distribution, metabolism, excretion and toxicity (ADMET) profiling. Molecular dynamics simulations can serve as a comprehensive framework for understanding the molecular interactions and stability of candidate drugs in an in silico approach, reducing the need for extensive wet-lab experiments and providing valuable insights for targeted therapeutic development. The review covers the entire process, from the initial computational screening of promising candidates to their subsequent experimental validation. It also proposes integrating computational tools with traditional screening methods to enhance the efficiency of antiviral drug discovery in aquaculture. Finally, we explore future perspectives, particularly the potential of artificial intelligence and multi-omics approaches. These innovative technologies can significantly accelerate the identification and optimisation of natural antivirals, contributing to sustainable disease management in aquaculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
黄桂斌应助KerryDoe采纳,获得10
1秒前
summer完成签到,获得积分10
1秒前
LaTeXer应助pang采纳,获得30
1秒前
七一琦完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
韩梦完成签到,获得积分10
3秒前
weifeng发布了新的文献求助10
5秒前
5秒前
欣欣完成签到,获得积分10
5秒前
YANG完成签到 ,获得积分10
6秒前
6秒前
6秒前
jusser发布了新的文献求助10
7秒前
manman发布了新的文献求助10
7秒前
万万完成签到,获得积分10
7秒前
cxl发布了新的文献求助10
7秒前
8秒前
9秒前
MaYi完成签到,获得积分10
9秒前
zho应助科研通管家采纳,获得10
9秒前
Rondab应助NiNi采纳,获得10
9秒前
考拉发布了新的文献求助10
9秒前
zhangyu应助科研通管家采纳,获得10
9秒前
zho应助科研通管家采纳,获得10
10秒前
zho应助科研通管家采纳,获得10
10秒前
zhangyu应助科研通管家采纳,获得10
10秒前
LaTeXer应助三金采纳,获得30
10秒前
orixero应助科研通管家采纳,获得10
10秒前
zhangyu应助科研通管家采纳,获得10
10秒前
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
10秒前
11秒前
小樱发布了新的文献求助10
11秒前
khurram发布了新的文献求助10
12秒前
pomfret完成签到 ,获得积分10
12秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4005215
求助须知:如何正确求助?哪些是违规求助? 3545034
关于积分的说明 11292297
捐赠科研通 3281370
什么是DOI,文献DOI怎么找? 1809662
邀请新用户注册赠送积分活动 885409
科研通“疑难数据库(出版商)”最低求助积分说明 810888