Machine Learning Modeling for Predicting Infliximab Pharmacokinetics in Pediatric and Young Adult Patients With Crohn Disease: Leveraging Ensemble Modeling With Synthetic and Real-World Data

英夫利昔单抗 克罗恩病 药代动力学 疾病 医学 克罗恩病 机器学习 计算机科学 人工智能 内科学
作者
Kei Irie,Phillip Minar,Jack Reifenberg,Brendan M. Boyle,Joshua D. Noe,Jeffrey S. Hyams,Tomoyuki Mizuno
出处
期刊:Therapeutic Drug Monitoring [Ovid Technologies (Wolters Kluwer)]
卷期号:48 (1): 98-104 被引量:1
标识
DOI:10.1097/ftd.0000000000001348
摘要

Background: Predicting infliximab pharmacokinetics (PK) is essential for optimizing individualized dosing in pediatric patients with Crohn disease (CD). Machine learning (ML) has emerged as a tool for predicting drug exposure; however, its development typically requires large datasets. This study aimed to develop an ML model for infliximab PK prediction by leveraging population PK model–based synthetic and real-world data. Methods: An initial ML model was trained using the XGBoost algorithm with synthetic infliximab concentration data (n = 560,000) generated from an established pediatric PK model. The prediction errors were assessed using real-world data, including 292 plasma concentrations from 93 pediatric and young adult patients with CD. A second XGBoost model, incorporating clinical features, was used to correct these errors. The performance of the model was evaluated using the root mean square error (RMSE) and mean prediction error (MPE). Results: The first ML model yielded RMSE and MPE values of 6.44 and 1.84 mcg/mL, respectively. The features of the second XGBoost model included the predicted infliximab concentrations, cumulative dose, and dosing interval duration. A 5-fold cross-validation demonstrated improved performance of the ensemble model (RMSE = 4.30 ± 1.09 mcg/mL, MPE = 0.21 ± 0.39 mcg/mL) compared with the initial model and was comparable with the Bayesian approach (RMSE = 4.81 mcg/mL, MPE = −0.67 mcg/mL). Conclusions: This study demonstrated the feasibility of combining synthetic and real-world data to develop an ML-based approach for infliximab PK prediction, potentially enhancing precision dosing in pediatric CD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lucky37发布了新的文献求助10
1秒前
2秒前
在水一方应助111采纳,获得10
2秒前
2秒前
2秒前
852应助rock采纳,获得10
3秒前
科研通AI2S应助自由的舞蹈采纳,获得10
3秒前
3秒前
4秒前
思源应助沉默是金采纳,获得10
4秒前
bkagyin应助www采纳,获得10
5秒前
szp发布了新的文献求助10
5秒前
6秒前
奋斗时光发布了新的文献求助10
6秒前
晞嘻发布了新的文献求助10
6秒前
xiuwen完成签到,获得积分10
6秒前
科研通AI6应助容若采纳,获得10
7秒前
7秒前
机智的嘻嘻完成签到 ,获得积分10
7秒前
bu才发布了新的文献求助10
8秒前
嘿嘿发布了新的文献求助10
8秒前
科研通AI6应助微笑老太采纳,获得10
8秒前
俏皮的短靴应助微笑老太采纳,获得10
8秒前
8秒前
8秒前
富贵儿发布了新的文献求助10
8秒前
成子发布了新的文献求助10
8秒前
8秒前
等待蚂蚁完成签到 ,获得积分10
9秒前
9秒前
10秒前
杨礼嘉发布了新的文献求助10
11秒前
11秒前
11秒前
辛儿的毅发布了新的文献求助10
12秒前
al关闭了al文献求助
12秒前
13秒前
FashionBoy应助coollz采纳,获得10
13秒前
CipherSage应助王王采纳,获得10
13秒前
百里烬言发布了新的文献求助10
13秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5614975
求助须知:如何正确求助?哪些是违规求助? 4699849
关于积分的说明 14905634
捐赠科研通 4740875
什么是DOI,文献DOI怎么找? 2547874
邀请新用户注册赠送积分活动 1511649
关于科研通互助平台的介绍 1473715