已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The application of deep learning models in investment risk analysis of intelligent manufacturing projects

投资(军事) 深度学习 计算机科学 制造工程 人工智能 工程类 工程管理 数据科学 政治学 政治 法学
作者
Shaobin Dong,Aihua Li
出处
期刊:Intelligent Decision Technologies [IOS Press]
标识
DOI:10.1177/18724981251325923
摘要

The intelligent manufacturing industry is gradually replacing traditional manufacturing, and investing in intelligent manufacturing projects faces many risks. To address the insufficient investment risk analysis in manufacturing projects, an intelligent investment risk assessment method is proposed. The novelty lies in the combination of expert methods and big data mining techniques to construct project risk indicators, which improves the effectiveness of risk assessment. Meanwhile, a risk prediction model combining convolutional networks and long short-term models is introduced to analyze project investment risks and improve the accuracy of risk supervision. In the model performance test, when the sliding window was 4, the ROC area of the research model was 0.9366, indicating that the overall performance of the research model was better. The comparison of root mean square errors in model training showed that the model trained on K1 and K2 data had root mean square errors of 0.008 and 0.017, respectively, which were superior to other models. When comparing data from different partitions, this research model effectively analyzed time series data, with an overall prediction accuracy of 97.65% compared with other models. In different levels of risk prediction, the research model had the highest overall prediction accuracy, with an accuracy of 94.32%, which was better than other models. Finally, in the comprehensive risk prediction comparison, 16 experiments were conducted. The average accuracy of the research model was 94.95%, which was better than the other three models. Meanwhile, the highest and lowest predicted values of the research model were 96.48% and 93.45%, respectively, which were superior to other models. The research content can provide valuable references for enterprise investment decision-making and risk management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
禹卓发布了新的文献求助10
1秒前
2秒前
hhhhhhhhhh完成签到 ,获得积分10
3秒前
4秒前
5秒前
JING发布了新的文献求助10
5秒前
乐乐应助nuonuo采纳,获得10
6秒前
Yummy发布了新的文献求助10
7秒前
刘燕发布了新的文献求助10
8秒前
紧张的似狮完成签到 ,获得积分10
11秒前
情怀应助少7一点8采纳,获得10
13秒前
小凯完成签到 ,获得积分10
14秒前
100完成签到,获得积分10
15秒前
天津科技大学完成签到,获得积分10
17秒前
科研通AI5应助喜悦夏青采纳,获得10
17秒前
bono完成签到 ,获得积分10
17秒前
刘燕完成签到,获得积分20
18秒前
安静无招完成签到 ,获得积分10
20秒前
22秒前
SciGPT应助科研通管家采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
MchemG应助科研通管家采纳,获得20
26秒前
深情安青应助科研通管家采纳,获得10
26秒前
小程同学发布了新的文献求助10
27秒前
28秒前
啦啦啦啦完成签到,获得积分10
28秒前
29秒前
火星仙人掌完成签到 ,获得积分10
31秒前
LAN完成签到,获得积分10
31秒前
慕青应助花开采纳,获得10
31秒前
斑马兽发布了新的文献求助10
32秒前
Hu完成签到,获得积分10
33秒前
小程同学完成签到,获得积分10
33秒前
xx完成签到 ,获得积分10
35秒前
夜阑卧听完成签到,获得积分10
35秒前
Veronica完成签到,获得积分10
36秒前
36秒前
kai chen完成签到 ,获得积分0
38秒前
40秒前
花开完成签到,获得积分20
40秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795454
求助须知:如何正确求助?哪些是违规求助? 3340458
关于积分的说明 10300316
捐赠科研通 3057032
什么是DOI,文献DOI怎么找? 1677356
邀请新用户注册赠送积分活动 805385
科研通“疑难数据库(出版商)”最低求助积分说明 762491