Enhancing Drug Synergy Combination: Integrating Graph Transformers and BiLSTM for Accurate Drug Synergy Prediction

计算机科学 药品 数据挖掘 医学 药理学
作者
Bin Sun,Haoze Du,Shumei Hou,Qingkai Hu,Xiaojuan Pang,Dong‐Qing Wei,Xianfang Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2025.3561887
摘要

Combination therapy of drugs showed significant potential in treating complex diseases by overcoming drug resistance and improving therapeutic efficacy. However, due to the rapid increase in the number of available drugs, the cost and time required for experimentally screening synergistic drug combinations became increasingly burdensome. In this work, we proposed a novel drug synergy prediction model called GraphTranSynergy, which utilized graph transformer and BiLSTM to capture the molecular structure of drugs and gene expression features of cell lines. GraphTranSynergy extracted graphical features of drug pairs through the graph transformer module and integrated information from the BiLSTM module to extract useful features from gene expression profiles of cell lines. The final prediction of drug synergy was made through a fully connected neural network. Our model achieved AUC and PRAUC scores of 0.94, outperforming most existing models. Independent test results demonstrated that GraphTranSynergy exhibited superior generalization ability on the AstraZeneca dataset, particularly excelling in ACC and TPR metrics. Through a series of experiments and analyses, our model not only improved prediction accuracy but also demonstrated advantages in biological interpretability. The GraphTranSynergy code can be accessed at https://github.com/DreamAI-mastersun/GraphTranSynergy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sha303270给sha303270的求助进行了留言
刚刚
苦酷发布了新的文献求助10
1秒前
orixero应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
打卡下班应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
2秒前
CAOHOU应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
2秒前
4秒前
4秒前
wjm8603完成签到,获得积分10
5秒前
酷波er应助rr采纳,获得10
5秒前
清爽的人龙完成签到 ,获得积分10
6秒前
Zl关闭了Zl文献求助
7秒前
lll发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
Owen应助科研狗采纳,获得10
10秒前
甜橙完成签到 ,获得积分10
11秒前
11秒前
11秒前
jingyi完成签到,获得积分10
12秒前
体贴苞络发布了新的文献求助10
12秒前
废物点心还挺甜完成签到,获得积分10
13秒前
苦酷完成签到,获得积分10
14秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4133077
求助须知:如何正确求助?哪些是违规求助? 3669892
关于积分的说明 11604906
捐赠科研通 3366546
什么是DOI,文献DOI怎么找? 1849609
邀请新用户注册赠送积分活动 913156
科研通“疑难数据库(出版商)”最低求助积分说明 828499