Enhancing Drug Synergy Combination: Integrating Graph Transformers and BiLSTM for Accurate Drug Synergy Prediction

计算机科学 药品 数据挖掘 医学 药理学
作者
Bin Sun,Haoze Du,Shumei Hou,Qingkai Hu,Xiaojuan Pang,Dong‐Qing Wei,Xianfang Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2025.3561887
摘要

Combination therapy of drugs showed significant potential in treating complex diseases by overcoming drug resistance and improving therapeutic efficacy. However, due to the rapid increase in the number of available drugs, the cost and time required for experimentally screening synergistic drug combinations became increasingly burdensome. In this work, we proposed a novel drug synergy prediction model called GraphTranSynergy, which utilized graph transformer and BiLSTM to capture the molecular structure of drugs and gene expression features of cell lines. GraphTranSynergy extracted graphical features of drug pairs through the graph transformer module and integrated information from the BiLSTM module to extract useful features from gene expression profiles of cell lines. The final prediction of drug synergy was made through a fully connected neural network. Our model achieved AUC and PRAUC scores of 0.94, outperforming most existing models. Independent test results demonstrated that GraphTranSynergy exhibited superior generalization ability on the AstraZeneca dataset, particularly excelling in ACC and TPR metrics. Through a series of experiments and analyses, our model not only improved prediction accuracy but also demonstrated advantages in biological interpretability. The GraphTranSynergy code can be accessed at https://github.com/DreamAI-mastersun/GraphTranSynergy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kingmp2完成签到 ,获得积分10
刚刚
Lucas应助斯文明杰采纳,获得10
1秒前
小卡比完成签到,获得积分10
3秒前
5秒前
5秒前
5秒前
rrr完成签到,获得积分20
11秒前
Hello应助热情孤丹采纳,获得10
14秒前
跳脚的虾完成签到 ,获得积分10
16秒前
19秒前
加和减完成签到,获得积分20
19秒前
善良的冷梅完成签到,获得积分10
21秒前
rrr关注了科研通微信公众号
22秒前
AMENG完成签到,获得积分10
22秒前
一屿完成签到,获得积分10
24秒前
沉静的元容完成签到,获得积分10
25秒前
坚定语蕊完成签到,获得积分10
27秒前
yKkkkkk完成签到 ,获得积分10
28秒前
科研小白给科研小白的求助进行了留言
29秒前
甜蜜冰颜完成签到,获得积分10
31秒前
31秒前
32秒前
成太完成签到,获得积分10
38秒前
SCI完成签到,获得积分10
38秒前
gyl完成签到 ,获得积分10
38秒前
40秒前
41秒前
成太发布了新的文献求助10
42秒前
46秒前
48秒前
Orange应助QQ采纳,获得10
48秒前
彭于晏应助heheha采纳,获得10
51秒前
默默的彩虹完成签到 ,获得积分10
54秒前
c—137Morty完成签到,获得积分10
54秒前
StH发布了新的文献求助30
55秒前
56秒前
科研通AI5应助科研通管家采纳,获得30
56秒前
隐形曼青应助科研通管家采纳,获得10
56秒前
joker_k应助科研通管家采纳,获得10
56秒前
冰魂应助科研通管家采纳,获得10
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778363
求助须知:如何正确求助?哪些是违规求助? 3323989
关于积分的说明 10216917
捐赠科研通 3039279
什么是DOI,文献DOI怎么找? 1667934
邀请新用户注册赠送积分活动 798438
科研通“疑难数据库(出版商)”最低求助积分说明 758385