A Novel Switching of Artificial Intelligence to Generate Simultaneously Multimodal Images to Assess Inflammation and Predict Outcomes in Ulcerative Colitis—(With Video)

医学 模式 模态(人机交互) 队列 人工智能 彩色内窥镜 结肠镜检查 治疗方式 粘膜炎症 内科学 炎症 结直肠癌 计算机科学 癌症 社会科学 社会学
作者
Marietta Iacucci,Irene Zammarchi,Giovanni Santacroce,Bisi Bode Kolawole,Ujwala Chaudhari,Rocío del Amor,Pablo Meseguer,Valery Naranjo,Miguel Puga‐Tejada,Ivan Capobianco,Ilaria Ditonno,Andrea Buda,Brian Hayes,Rory Crotty,Raf Bisschops,Subrata Ghosh,Enrico Grisan
出处
期刊:Digestive Endoscopy [Wiley]
被引量:1
标识
DOI:10.1111/den.15067
摘要

ABSTRACT Objectives Virtual Chromoendoscopy (VCE) is pivotal for assessing activity and predicting outcomes in Ulcerative Colitis (UC), though interobserver variability and the need for expertise persist. Artificial intelligence (AI) offers standardized VCE‐based assessment. This study introduces a novel AI model to detect and simultaneously generate various endoscopic modalities, enhancing AI‐driven inflammation assessment and outcome prediction in UC. Methods Endoscopic videos in high‐definition white‐light, iScan2, iScan3, and NBI from UC patients of the international PICaSSO iScan and NBI cohort (302 and 54 patients, respectively) were used to develop a neural network to identify the acquisition modality of each frame and for inter‐modality image switching. 2535 frames from 169 videos of the iScan cohort were switched to different modalities and trained a deep‐learning model for inflammation assessment. Subsequently, the model was tested on a subset of the iScan and NBI cohorts (72 and 51 videos, respectively). Performance in predicting endoscopic and histological activity and outcomes was evaluated. Results The model efficiently classified and converted images across modalities (92% accuracy). Performance in predicting endoscopic and histological remission was excellent, especially with different modalities combined in both iScan (accuracy 81.3% and 89.6%; AUROC 0.92 and 0.89 by UCEIS and PICaSSO, respectively) and the NBI cohort. Moreover, it showed a remarkable ability in predicting clinical outcomes. Conclusions Our multimodal “AI‐switching” model innovatively detects and transitions between different endoscopic modalities, refining inflammation assessment and outcome prediction in UC by integrating model‐derived images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
聪明盈完成签到,获得积分10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
mao发布了新的文献求助10
1秒前
1秒前
Xiaozhe完成签到,获得积分10
2秒前
情怀应助元气满满采纳,获得10
2秒前
睡觉发布了新的文献求助10
2秒前
3秒前
传奇3应助小羊采纳,获得10
4秒前
JamesPei应助luen采纳,获得10
5秒前
5秒前
5秒前
高c发布了新的文献求助10
5秒前
圈圈完成签到 ,获得积分10
6秒前
星辰大海应助游元稔采纳,获得10
6秒前
一路向北发布了新的文献求助10
7秒前
20224273发布了新的文献求助10
7秒前
FashionBoy应助谦让面包采纳,获得10
8秒前
Lucas应助筱泉采纳,获得10
8秒前
临风发布了新的文献求助10
8秒前
渊渟岳峙发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
CodeCraft应助mao采纳,获得10
10秒前
量子星尘发布了新的文献求助150
10秒前
李维肖发布了新的文献求助30
10秒前
eureka发布了新的文献求助10
13秒前
wenwen0666发布了新的文献求助10
13秒前
14秒前
睡觉完成签到,获得积分20
14秒前
15秒前
认真的幻姬完成签到,获得积分10
17秒前
18秒前
搞怪莫茗发布了新的文献求助10
18秒前
科研通AI5应助寄往光明采纳,获得30
18秒前
白嫖论文发布了新的文献求助10
20秒前
朱凌娇发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4850360
求助须知:如何正确求助?哪些是违规求助? 4149642
关于积分的说明 12854968
捐赠科研通 3897180
什么是DOI,文献DOI怎么找? 2142003
邀请新用户注册赠送积分活动 1161581
关于科研通互助平台的介绍 1061528