A Multi-Focus-Driven Multi-Branch Network for Robust Multimodal Sentiment Analysis

光学(聚焦) 情绪分析 计算机科学 人工智能 光学 物理
作者
Chuanqi Tao,Jiaming Li,Tianzi Zang,Peng Gao
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:39 (2): 1547-1555
标识
DOI:10.1609/aaai.v39i2.32146
摘要

Multimodal sentiment analysis aims to integrate diverse modalities for precise emotional interpretation. However, external factors such as sensor malfunctions or network issues may disrupt certain modalities. This may lead to missing data, which poses challenges in real-world deployment. Most existing approaches focus on designing feature reconstruction strategies, overlooking the collaborative integration of reconstruction and fusion strategies. Moreover, they fail to capture the relationships between features in the global dimension and those in the local dimension. These limitations hinder the full capture of the complex nature of multimodal data, especially in scenarios involving missing modalities. To address the above issues, this paper proposes a robust model named MFMB-Net with multiple branches for feature multi-focus fusion and reconstruction. We design a two-stream fusion branch where macro-fusion focuses on the fusion of features in the global dimension and micro-fusion targets local dimension features. This dual-stream fusion branch distributes multi-focus across both pathways, simultaneously capturing global coarse-grained and local fine-grained features. Additionally, the reconstruction branch interacts collaboratively with the fusion branch to reconstruct and enhance the missing data. It integrates the reconstructed feature information with the fused information thus refining the representation fidelity of the missing information. Experiments performed on two benchmarks show that our approach obtains results superior to state-of-the-art models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
浮游应助风清扬采纳,获得10
1秒前
Hello应助风清扬采纳,获得10
1秒前
SciGPT应助风清扬采纳,获得50
1秒前
SciGPT应助风清扬采纳,获得10
1秒前
3秒前
松叶发布了新的文献求助10
4秒前
英俊的铭应助Shann采纳,获得10
4秒前
lw完成签到,获得积分10
5秒前
午后狂睡完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
滑稽剑客发布了新的文献求助10
7秒前
厚德载物完成签到,获得积分10
7秒前
7秒前
科研通AI6应助1816013153采纳,获得10
8秒前
9秒前
echo发布了新的文献求助10
12秒前
12秒前
13秒前
Hilda007应助Noblesj采纳,获得10
15秒前
甜甜千兰发布了新的文献求助10
16秒前
16秒前
浮游应助権権采纳,获得10
16秒前
浮游应助権権采纳,获得10
16秒前
shhoing应助権権采纳,获得10
16秒前
BowieHuang应助无私羽毛采纳,获得10
17秒前
lutao完成签到,获得积分10
17秒前
NexusExplorer应助蟹黄丸子采纳,获得50
20秒前
Ava应助rain采纳,获得10
20秒前
桐桐发布了新的文献求助10
22秒前
FashionBoy应助1111采纳,获得10
22秒前
浮游应助権権采纳,获得10
23秒前
gexzygg应助権権采纳,获得10
23秒前
24秒前
alooof完成签到 ,获得积分10
25秒前
拓跋寡妇完成签到 ,获得积分10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5541887
求助须知:如何正确求助?哪些是违规求助? 4628123
关于积分的说明 14607272
捐赠科研通 4569300
什么是DOI,文献DOI怎么找? 2505122
邀请新用户注册赠送积分活动 1482517
关于科研通互助平台的介绍 1454064